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Subsection 1

Logistic Regression
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Learning

Distance Metric
One option for distance metric is:

L(θ) = Ex∼pdata(X)

[
KL

(
pdata

(
y|x
) ∥∥ pθ

(
y|x
))
]

=
∑

x

pdata(x)

[∑

y

pdata(y|x) log
pdata(y|x)
pθ(y|x)

]

=
∑

y

∑

x

pdata(x, y) log pdata(y|x)
︸ ︷︷ ︸

E(x,y)∼pdata(X,Y )[log pdata(y|x)]

−
∑

y

∑

x

pdata(x, y) log pθ(x|y)
︸ ︷︷ ︸

E(x,y)∼pdata(X,Y )[log pθ(y|x)]

While the second term is a function of your model parameters, the first one is
independent of the selected Autoregressive model and thus can be omitted in
optimization.
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Training

Distance Metric
So:

argmax
θ

L(θ) = argmax
θ

−E(x,y)∼pdata(X,Y ) [log pθ(y|x)]

Monte Carlo Estimation
Consider the following expectation:

Ex∼p(X)
[
f(x)

]
=

∫
p(x)f(x)dx

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as x1, . . . ,xN .Then expectation can be approximated as:

Ex∼p(X)
[
f(x)

]
≃ 1

N

∑

n

f(xn)
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Training

Optimization
Using Monte-Carlo estimation, we have the following optimization problem:

θ⋆ =argmax
θ

−E(x,y)∼pdata(X,Y ) [log pθ(y|x)]

≃ argmax
θ

− 1

N

N∑

i=1

log pθ(yi|xi)
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Sampling

.

.

.

θ*

Figure: Sampling a trained model
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Sampling a Categorical Distribution

Cat(y | C =                    )
c0 = 0.1
c1 = 0.7
c2 = 0.2

Figure: Sampling a categorical distribution using a Uniform sampler
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Subsection 2

Deep Autoregressive Models
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Modeling

Model Specification
Assume we just have MINST image {xi}Ni=1 without any label and we want to
estimate generating distribution p(x) where x ∈ R784.

Challenge: High-dimensional Random Vector
In contrast to logistic regression where we model pdata(y|x) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.

☞ It seems that we can’t use logistic regression here.
☞ We can model each dimension separately because xi ∈ {0, 1, 2, . . . , 255}

Chain Rule
Based on the chain rule, we have:

p(x) = p(x1)p(x2|x<2) . . . p(xd|x<d) . . . p(xD|x<D), x<d ≜ [x1, . . . , xd−1]
T
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Modeling

p(x) = p(x0) ⨉ p(x1 | x<1) ⨉ …… ⨉ p(xd | x<d) ⨉ …… ⨉ p(xD-1 | x<D-1)

Figure: Using logistic regression for generative modeling
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Modeling

bd ∊ R256

Wd ∊ R256⨉d
xd ∊ {0,1,...,255}⟹ ∀  0 ≤ d ≤ D-1
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Distance Metric

Distance Metric
We want to comapre two distribution pdata and pθ, thus we can use KL diver-
gence as:

L(θ) = KL(pdata∥pθ) =

Ex∼pdata(X)

[
log

(
pdata(x)

pθ(x)

)]

We can rewrite L(θ) as:

L(θ) = Ex∼pdata
[log pdata(x)]− Ex∼pdata

[log pθ(x)]

Because the first term on the right-hand side is independent of θ, we have:

θ⋆ = argmin
θ

Ex∼pdata

[
log

(
pdata(x)

pθ(x)

)]
≡ argmax

θ
Ex∼pdata

[log pθ(x)]
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From KL divergence to Model Likelihood

Model Likelihood
We see:

θ⋆ = argmax
θ

Ex∼pdata
[log pθ(x)]

Thus:

Desirable situation is when pθ(X) assign high probability to probable
regions in pdata(X)
We have yet a problem: No access to pdata
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Training

Monte Carlo Estimation
Consider the following expectation:

Ex∼p(X)
[
f(x)

]
=

∫
p(x)f(x)dx

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as x1, . . . ,xN .Then expectation can be approximated as:

Ex∼p(X)
[
f(x)

]
≃ 1

N

∑

n

f(xn)
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Model Likelihood Estimation

Model Likelihood Estimation
We are interested in solving the following problem:

θ⋆ = argmax
θ

Ex∼pdata(X) [log pθ(x)]

but we don’t have access to pdata and instead, we have access to independent
samples from the distribution D = {xi}Ni=1.

Solution via Monte Carlo Estimate
Using the Monte Carlo estimate we have:

Ex∼pdata(X) [log pθ(x)] ≃
1

N

N∑

n=1

log pθ(xn)

Thus: θ⋆ = argmax
θ

1

N

N∑

n=1

log pθ(xn)
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Parametric Density Calculation

θ = { b0, b1, W1, …, bd ,Wd,  … , bD-1, WD-1}

Figure: Calculating the likelihood as a function of model parameters
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Sampling from a Generative Model

θ  = { b0, b1, W1, …, bd ,Wd,  … , bD-1, WD-1}
★ ★ ★ ★ ★ ★ ★★

Figure: Sampling a trained Autoregressive Model
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Some of Autoregressive Modeling Extensions

p(x) = p(x0) ⨉ p(x1 | x<1) ⨉ …… ⨉ p(xd | x<d) ⨉ …… ⨉ p(xD-1 | x<D-1)

...
...

Fully Visible Sigmoid Belief Networks
(FVSBN)

Sajjad Amini COMPSCI 589 - Summer 2024 Extensions 58 / 69



Some of Autoregressive Modeling Extensions

p(x) = p(x0) ⨉ p(x1 | x<1) ⨉ …… ⨉ p(xd | x<d) ⨉ …… ⨉ p(xD-1 | x<D-1)

...
...

Neural Autoregressive Density Estimation
(NADE)
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Some of Autoregressive Modeling Extensions

p(x) = p(x0) ⨉ p(x1 | x<1) ⨉ …… ⨉ p(xd | x<d) ⨉ …… ⨉ p(xD-1 | x<D-1)

Pixel Recurrent Neural Networks
(PixelRNN) 
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Some of Autoregressive Modeling Extensions

p(x) = p(x0) ⨉ p(x1 | x<1) ⨉ …… ⨉ p(xd | x<d) ⨉ …… ⨉ p(xD-1 | x<D-1)

Pixel Convolutional Neural Networks
(PixelCNN) 
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Some of Autoregressive Modeling Extensions

p(x) = p(x0) ⨉ p(x1 | x<1) ⨉ …… ⨉ p(xd | x<d) ⨉ …… ⨉ p(xD-1 | x<D-1)

Transformer
(ChatGPT) 
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FVSBN Learning Deep Sigmoid Belief Networks with Data Augmentation

 

Figure 4: Performance on the Caltech 101 Silhouettes dataset. (Left) Training data. (Middle) Averaged synthesized
samples. (Right) Learned features at the bottom layer.
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Figure 5: Average variational lower bound obtained from
the SBN 200 − 200 model on the Caltech 101 Silhouettes
dataset.

the trained model; different shapes are synthesized and
appear visually good.

5.4 OCR letters dataset

The OCR letters dataset contains 16× 8 binary pixel
images of 26 letters in the English alphabet. The
dataset is split into 42, 152 training and 10, 000 test
examples. Results are reported in Table 3. The pro-
posed ARSBN with K = 200 hidden units achieves a
lower bound of −37.97. The state-of-the-art here is a
DBM with 2000 hidden units in each layer (Salakhut-
dinov and Larochelle, 2010). Our model gives results
that are only marginally worse using a network with
100 times fewer connections.

Table 3: Log probability of test data on OCR letters
dataset. “Dim” represents the number of hidden units in
each layer, starting with the bottom one. (∗) taken from
Salakhutdinov and Larochelle (2010).

Model Dim Test log-prob.
SBN (online VB) 200 −48.71
SBN (VB) 200 −48.20
SBN (VB) 200 − 200 −47.84
FVSBN (VB) − −39.71
ARSBN (VB) 200 −37.97
ARSBN (VB) 200 − 200 −38.56
SBN (Gibbs) 200 −40.95
DBM∗ 2000 − 2000 −34.24

6 Discussion and future work

A simple and efficient Gibbs sampling algorithm and
mean field variational Bayes approximation are devel-
oped for learning and inference of model parameters
in the sigmoid belief networks. This has been imple-
mented in a novel way by introducing auxiliary Pólya-
Gamma variables. Several encouraging experimental
results have been presented, enhancing the idea that
the deep learning problem can be efficiently tackled in
a fully Bayesian framework.

While this work has focused on binary observations,
one can model real-valued data by building latent bi-
nary hierarchies as employed here, and touching the
data at the bottom layer by a real-valued mapping, as
has been done in related RBM models (Salakhutdinov
et al., 2013). Furthermore, the logistic link function is
typically utilized in the deep learning literature. The
probit function and the rectified linearity are also con-
sidered in the nonlinear Gaussian belief network (Frey
and Hinton, 1999). Under the Bayesian framework,
by using data augmentation (Polson et al., 2011), the
max-margin link could be utilized to model the non-
linearities between layers when training a deep model.
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(b) Generated samples

Figure: FVSBN performance over Caltech 101 dataset (source: [5])
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Neural Autoregressive Distribution Estimation
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The Neural Autoregressive Distribution Estimator

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
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where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
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We then recover the mean-field updates of Equa-
tions 7 and 8.
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Figure 4: (Left): samples from NADE trained on binarized MNIST. (Right): probabilities
from which each pixel was sampled. Ancestral sampling was used with the same
fixed ordering used during training.

Algorithm 2 Pretraining of a NADE with n hidden layers on dataset X.

procedure PRETRAIN(n,X)
if n = 1 then

return RANDOM-ONE-HIDDEN-LAYER-NADE
else

nade← PRETRAIN(n− 1, X)
nade← REMOVE-OUTPUT-LAYER(nade)
nade← ADD-A-NEW-HIDDEN-LAYER(nade)
nade← ADD-A-NEW-OUTPUT-LAYER(nade)
nade← TRAIN-ALL(nade,X, iters = 20) . Train for 20 iterations.
return nade

end if
end procedure

composed of 16 units. Oord et al. (2016) proposed a novel two-dimensional LSTM,
named Diagonal BiLSTM, which is used in this model. Unlike our ConvNADE, the
ordering is fixed before training and at test time, and corresponds to a scan of the
image in a diagonal fashion starting from a corner at the top and reaching the opposite
corner at the bottom.

We compare these baselines with some NADE variants. The performance of a basic
(fixed-order, single hidden layer) NADE model is provided in Table 3 and samples are
illustrated in Figure 4. More importantly, we will focus on whether the following variants
achieve better test set performance:

19

Figure: NADE performance over BMNIST dataset (source: [6])
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Abstract
Modeling the distribution of natural images is
a landmark problem in unsupervised learning.
This task requires an image model that is at
once expressive, tractable and scalable. We
present a deep neural network that sequentially
predicts the pixels in an image along the two
spatial dimensions. Our method models the dis-
crete probability of the raw pixel values and en-
codes the complete set of dependencies in the
image. Architectural novelties include fast two-
dimensional recurrent layers and an effective use
of residual connections in deep recurrent net-
works. We achieve log-likelihood scores on nat-
ural images that are considerably better than the
previous state of the art. Our main results also
provide benchmarks on the diverse ImageNet
dataset. Samples generated from the model ap-
pear crisp, varied and globally coherent.

1. Introduction
Generative image modeling is a central problem in unsu-
pervised learning. Probabilistic density models can be used
for a wide variety of tasks that range from image compres-
sion and forms of reconstruction such as image inpainting
(e.g., see Figure 1) and deblurring, to generation of new
images. When the model is conditioned on external infor-
mation, possible applications also include creating images
based on text descriptions or simulating future frames in a
planning task. One of the great advantages in generative
modeling is that there are practically endless amounts of
image data available to learn from. However, because im-
ages are high dimensional and highly structured, estimating
the distribution of natural images is extremely challenging.

One of the most important obstacles in generative mod-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

occluded completions original

Figure 1. Image completions sampled from a PixelRNN.

eling is building complex and expressive models that are
also tractable and scalable. This trade-off has resulted in
a large variety of generative models, each having their ad-
vantages. Most work focuses on stochastic latent variable
models such as VAE’s (Rezende et al., 2014; Kingma &
Welling, 2013) that aim to extract meaningful representa-
tions, but often come with an intractable inference step that
can hinder their performance.

One effective approach to tractably model a joint distribu-
tion of the pixels in the image is to cast it as a product of
conditional distributions; this approach has been adopted in
autoregressive models such as NADE (Larochelle & Mur-
ray, 2011) and fully visible neural networks (Neal, 1992;
Bengio & Bengio, 2000). The factorization turns the joint
modeling problem into a sequence problem, where one
learns to predict the next pixel given all the previously gen-
erated pixels. But to model the highly nonlinear and long-
range correlations between pixels and the complex condi-
tional distributions that result, a highly expressive sequence
model is necessary.

Recurrent Neural Networks (RNN) are powerful models
that offer a compact, shared parametrization of a series of
conditional distributions. RNNs have been shown to excel
at hard sequence problems ranging from handwriting gen-
eration (Graves, 2013), to character prediction (Sutskever
et al., 2011) and to machine translation (Kalchbrenner &
Blunsom, 2013). A two-dimensional RNN has produced
very promising results in modeling grayscale images and
textures (Theis & Bethge, 2015).

In this paper we advance two-dimensional RNNs and ap-
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Figure: Pixel RNN results in image completion (source: [7])
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Figure 3: Samples from our PixelCNN model trained on CIFAR-10.

Model Bits per sub-pixel
Deep Diffusion (Sohl-Dickstein et al., 2015) 5.40
NICE (Dinh et al., 2014) 4.48
DRAW (Gregor et al., 2015) 4.13
Deep GMMs (van den Oord & Dambre, 2015) 4.00
Conv DRAW (Gregor et al., 2016) 3.58
Real NVP (Dinh et al., 2016) 3.49
PixelCNN (van den Oord et al., 2016b) 3.14
VAE with IAF (Kingma et al., 2016) 3.11
Gated PixelCNN (van den Oord et al., 2016c) 3.03
PixelRNN (van den Oord et al., 2016b) 3.00
PixelCNN++ 2.92

Table 1: Negative log-likelihood for generative models on CIFAR-10 expressed as bits per sub-pixel.

3.2 CLASS-CONDITIONAL GENERATION

Next, we follow van den Oord et al. (2016c) in making our generative model conditional on the
class-label of the CIFAR-10 images. This is done by linearly projecting a one-hot encoding of the
class-label into a separate class-dependent bias vector for each convolutional unit in our network. We
find that making the model class-conditional makes it harder to avoid overfitting on the training data:
our best test log-likelihood is 2.94 in this case. Figure 4 shows samples from the class-conditional
model, with columns 1-10 corresponding the 10 classes in CIFAR-10. The images clearly look
qualitatively different across the columns and for a number of them we can clearly identify their
class label.

5

Figure: Samples from our PixelCNN model trained on CIFAR-10 (source: [8])
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Adversarial Robustness

against this security threat [71]. Formally, given a benign input
data X which is classified as class 1 by model M, find a function
F to generate X′ (poisoning function F; F(X) = X′) so that X′ is
classified as class 2 by the same model M where the difference
between X and X′ is not being discovered by humans.

This former definition is referred to as un-targeted adversar-
ial attacks. The targeted attacks have a target class Y where
function F is trying to find another version of any benign in-
put where model M becomes biased towards Y in prediction.
Another classification of adversarial attacks is based on the
amount of knowledge the attackers have about the target model
(victim). The threat model can be a white-box, gray-box, or
black-box. In white-box attacks, adversaries have full knowl-
edge about the targeted model architecture. This eases the pro-
cess of crafting poisoned data and thus fools the system. While
in gray-box threat models attackers could have some informa-
tion about the overall structure of the model, in black-box threat
models all that they have is just access to use the model [72].
A detailed taxonomy of adversarial attacks can be found in [5].
Figure 4 illustrates a common adversarial attack on an image
classification classifier, where an AI model has been deceived
by adding a tiny perturbation, amplified in the figure for visual
depiction, to a legitimate sample to disturb the prediction capa-
bilities of the model.

Stop Sign Yield Sign

Legitimate	Sample Adversarial	SampleAdversarial	Perturbation

Figure 4: An illustration of a common adversarial attack on image classification
AI model. The shown adversarial perturbation (amplified for illustration) is
added into a sample to force the model to make a wrong prediction with high
confidence [73].

Since the main focus of the paper is on smart city applica-
tions, thus without going into further details, in the next sub-
section, we provide an overview of the literature on adversarial
attacks on AI models in smart city applications.

2.1.1. Adversarial AI and Smart City Applications
Adversarial attacks are considered severe security threats in

learner-based models due to its possible consequences. In smart
cities, complex networks, and collaborations of data-driven ap-
plications and devices, the impact of misleading a model, e.g.,
a classifier, could result in harsh situations and a costly mess.
This could happen no matter the attack has intentionally misled
the model such as crafted inputs by attackers, or unintention-
ally “accidentally” such as a defect in traffic light signals, or
varying weather conditions that could impact signs illumina-
tion consumed by autonomous vehicles [74]. In [75], a pertur-
bation on a regular image of a stop sign forces a deep neural
network classifier to see it as a yield sign. This information can
lead the vehicle to behave unsafely and might cause severe ac-

cidents. This case could be worse if other neighboring vehicles
consume some data sent by the attacked vehicle. A DNN-based
solution was developed in [76] to detect and then isolate the at-
tacked vehicle from the cooperative vehicles. AI models in Au-
tonomous vehicles depend not only on the exchanged sensors
data but also on consuming street signs to control the driving
and traffic. The security of these models is crucial since a slight
change in sign image could be enough to fool the model, for
example, one pixel is often enough to attack a classifier in [77].

Similarly, human lives and billions of dollars could be vic-
tims of AI models that are misclassifying the diseases and med-
ical reports. In [67] using a slight noise on disease images
or even replacing some words in disease description by their
synonyms, the AI models changed the decisions to the oppo-
sites of the true ones. Despite that medical images are taken
in pre-defined settings, where some manipulations applied to
other domains images are not valid such as rotations, some ma-
nipulation methods can be easily detected by specialists eyes
[78], there is still a chance to be manipulated by other methods
[79]. In [80], GAN was able to modify breast medical images
through adding/removing features and change the AI decision
while radiologists never discriminate the difference between the
original and manipulated images at low-resolution rates. Brain
medical images have been manipulated by three different meth-
ods; noise generated, fast gradient sign, and virtual adversarial
training to generate adversarial examples to mislead the brain
tumor classifier [81]. Fortunately, with the help of DNN, a de-
tector has been developed and showed surprising high accuracy
in detecting manipulated medical images [82]. Another detec-
tor is a result of ensemble CNN networks [83], or by training
dataset augmentation by the adversarial examples of modified
CT scan images [84] The literature shows more evaluation of
medical image attacks than text attacks. This is probably be-
cause the attacks arise in the computer vision field. However,
texts in natural language are also liable to attacks [50]. This
means prescriptions, medical records classification for insur-
ance decisions, patient history, and allergic information, medi-
cal claims codes that determine reimbursement, are all vulnera-
ble to attacks. The sensitive nature of these applications and the
resulting harms (economic and well as social) raises the con-
cern for safety, security, and dependability of AI systems. In
the future, extra computational interventions (e.g. adversarial
data detectors) may form an integral part of AI-based medical
solutions.

Other components of smart cities are not far from serious
attacks. In the smart energy sector, attacks come in different
forms; denial-of-service where systems or part of them become
inaccessible and can also be optimized for more sufficient en-
ergy needs [85], randomly manipulate the sensor readings, or
with some information the attacker has about the system and
sensors, false data are injected to the system [86, 87, 88]. Sev-
eral detection solutions have been proposed and evaluated to
mitigate the attacks in a grid such as false data injection detec-
tion [89], securing the gird physical layers against attacks [90].

Adversarial attacks also have a serious impact on food safety
and production control [91]. Several AI solutions feed on im-
ages, videos, text in smart agriculture, and smart waste. These

7

Figure: Different adversarial attacks to Frog image from Cifar10 dataset (source: [9])
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Figure 1: An image sampled from the CIFAR-10 test dataset and various adversarial examples
generated from it. The text above shows the attacking method while the text below shows the
predicted label of the ResNet.

(a) (b)

Figure 2: (a) Likelihoods of different perturbed images with εattack = 8. (b) Test errors of a ResNet
on different adversarial examples.

density. The adversarial examples are generated with respect to a ResNet (He et al., 2016), which
gets 92% accuracy on the test images. We generate adversarial examples from RAND, FGSM, BIM,
DeepFool and CW methods with εattack = 8. Note that as shown in Figure 1, the resulting adversarial
perterbations are barely perceptible to humans.

However, the distribution of log-likelihoods show considerable difference between perturbed images
and clean images. As summarized in Figure 2, even a 3% perturbation can lead to systematic decrease
of log-likelihoods. Note that the PixelCNN model has no information about the attacking methods
for producing those adversarial examples, and no information about the ResNet model either.

We can see from Figure 3(b) that random perturbations also push the images outside of the training
distribution, even though they do not have the same adverse effect on accuracy. We believe this is due
to an inductive bias that is shared by many neural network models but not inherent to all models, as
discussed further in Appendix A.

Besides qualitative analysis, the log-likelihoods from PixelCNN also provide a quantitative measure
for detecting adversarial examples. Combined with permutation test (Efron & Tibshirani, 1994), we
can provide a uncertainty value for each input about whether it comes from the training distribution
or not. Specifically, let the input X′

i.i.d.∼ q(X) and training images X1, · · · ,XN
i.i.d.∼ p(X). The null

hypothesis is H0 : p(X) = q(X) while the alternative is H1 : p(X) 6= q(X). We first compute
the probabilities give by a PixelCNN for X′ and X1, · · · ,XN , then use the rank of pCNN(X

′) in
{pCNN(X1), · · · , pCNN(XN )} as our test statistic:

T = T (X′;X1, · · · ,XN ) ,
N∑

i=1

I[pCNN(Xi) ≤ pCNN(X
′)].

Here I[·] is the indicator function, which equals 1 when the condition inside brackets is true and other-
wise equals 0. Let Ti = T (Xi;X1, · · · ,Xi−1,X′,Xi+1, · · · ,XN ). According to the permutation
principle, Ti has the same distribution as T under the null hypothesis H0. We can therefore compute
the p-value exactly by

p =
1

N + 1

(
N∑

i=1

I[Ti ≤ T ] + 1

)
=
T + 1

N + 1
=

1

N + 1

(
N∑

i=1

I[pCNN(Xi) ≤ pCNN(X
′)] + 1

)
.

5

Figure: Sample adversarial attack to deep learning architectures (source: [9])
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Figure 1: An image sampled from the CIFAR-10 test dataset and various adversarial examples
generated from it. The text above shows the attacking method while the text below shows the
predicted label of the ResNet.

(a) (b)

Figure 2: (a) Likelihoods of different perturbed images with εattack = 8. (b) Test errors of a ResNet
on different adversarial examples.

density. The adversarial examples are generated with respect to a ResNet (He et al., 2016), which
gets 92% accuracy on the test images. We generate adversarial examples from RAND, FGSM, BIM,
DeepFool and CW methods with εattack = 8. Note that as shown in Figure 1, the resulting adversarial
perterbations are barely perceptible to humans.

However, the distribution of log-likelihoods show considerable difference between perturbed images
and clean images. As summarized in Figure 2, even a 3% perturbation can lead to systematic decrease
of log-likelihoods. Note that the PixelCNN model has no information about the attacking methods
for producing those adversarial examples, and no information about the ResNet model either.

We can see from Figure 3(b) that random perturbations also push the images outside of the training
distribution, even though they do not have the same adverse effect on accuracy. We believe this is due
to an inductive bias that is shared by many neural network models but not inherent to all models, as
discussed further in Appendix A.

Besides qualitative analysis, the log-likelihoods from PixelCNN also provide a quantitative measure
for detecting adversarial examples. Combined with permutation test (Efron & Tibshirani, 1994), we
can provide a uncertainty value for each input about whether it comes from the training distribution
or not. Specifically, let the input X′

i.i.d.∼ q(X) and training images X1, · · · ,XN
i.i.d.∼ p(X). The null

hypothesis is H0 : p(X) = q(X) while the alternative is H1 : p(X) 6= q(X). We first compute
the probabilities give by a PixelCNN for X′ and X1, · · · ,XN , then use the rank of pCNN(X

′) in
{pCNN(X1), · · · , pCNN(XN )} as our test statistic:

T = T (X′;X1, · · · ,XN ) ,
N∑
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I[pCNN(Xi) ≤ pCNN(X
′)].

Here I[·] is the indicator function, which equals 1 when the condition inside brackets is true and other-
wise equals 0. Let Ti = T (Xi;X1, · · · ,Xi−1,X′,Xi+1, · · · ,XN ). According to the permutation
principle, Ti has the same distribution as T under the null hypothesis H0. We can therefore compute
the p-value exactly by
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Figure 1: An image sampled from the CIFAR-10 test dataset and various adversarial examples
generated from it. The text above shows the attacking method while the text below shows the
predicted label of the ResNet.

(a) (b)

Figure 2: (a) Likelihoods of different perturbed images with εattack = 8. (b) Test errors of a ResNet
on different adversarial examples.

density. The adversarial examples are generated with respect to a ResNet (He et al., 2016), which
gets 92% accuracy on the test images. We generate adversarial examples from RAND, FGSM, BIM,
DeepFool and CW methods with εattack = 8. Note that as shown in Figure 1, the resulting adversarial
perterbations are barely perceptible to humans.

However, the distribution of log-likelihoods show considerable difference between perturbed images
and clean images. As summarized in Figure 2, even a 3% perturbation can lead to systematic decrease
of log-likelihoods. Note that the PixelCNN model has no information about the attacking methods
for producing those adversarial examples, and no information about the ResNet model either.

We can see from Figure 3(b) that random perturbations also push the images outside of the training
distribution, even though they do not have the same adverse effect on accuracy. We believe this is due
to an inductive bias that is shared by many neural network models but not inherent to all models, as
discussed further in Appendix A.

Besides qualitative analysis, the log-likelihoods from PixelCNN also provide a quantitative measure
for detecting adversarial examples. Combined with permutation test (Efron & Tibshirani, 1994), we
can provide a uncertainty value for each input about whether it comes from the training distribution
or not. Specifically, let the input X′

i.i.d.∼ q(X) and training images X1, · · · ,XN
i.i.d.∼ p(X). The null

hypothesis is H0 : p(X) = q(X) while the alternative is H1 : p(X) 6= q(X). We first compute
the probabilities give by a PixelCNN for X′ and X1, · · · ,XN , then use the rank of pCNN(X

′) in
{pCNN(X1), · · · , pCNN(XN )} as our test statistic:

T = T (X′;X1, · · · ,XN ) ,
N∑

i=1

I[pCNN(Xi) ≤ pCNN(X
′)].

Here I[·] is the indicator function, which equals 1 when the condition inside brackets is true and other-
wise equals 0. Let Ti = T (Xi;X1, · · · ,Xi−1,X′,Xi+1, · · · ,XN ). According to the permutation
principle, Ti has the same distribution as T under the null hypothesis H0. We can therefore compute
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p =
1

N + 1

(
N∑

i=1

I[Ti ≤ T ] + 1

)
=
T + 1

N + 1
=

1

N + 1

(
N∑

i=1

I[pCNN(Xi) ≤ pCNN(X
′)] + 1

)
.

5

(b) Density change

Figure: Using autoregressive models to detect adversarial samples (source: [9])
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Thank You!

Thank you for your attention!

Do you have any questions or comments?

Contact Information

Sajjad Amini
Email: samini@umass.edu
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