

## Section 6

From Supervised Learning to Generative Modeling

## Subsection 1

### Logistic Regression

# Logistic Regression Model

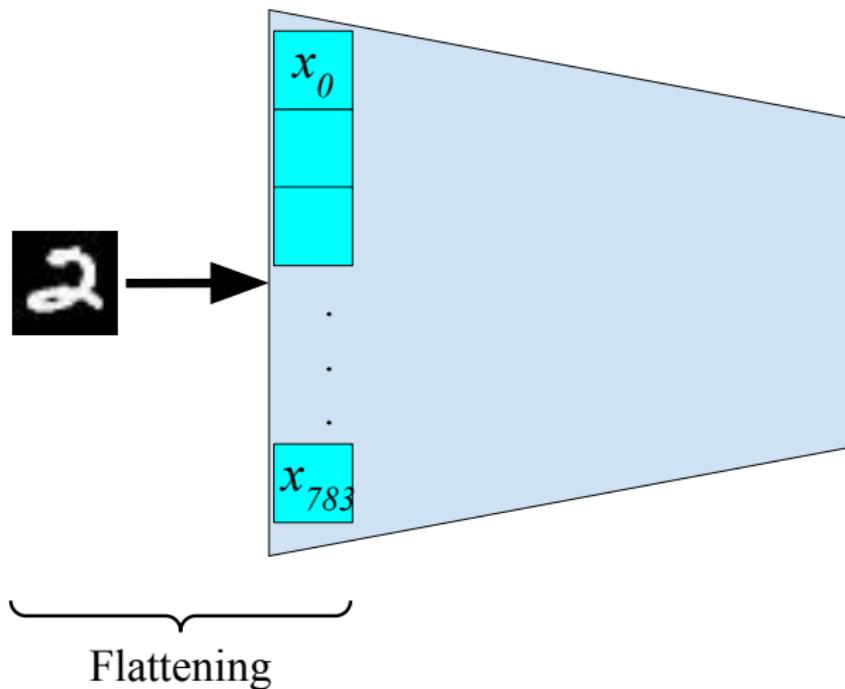


Figure: Logistic regression steps

# Logistic Regression Model

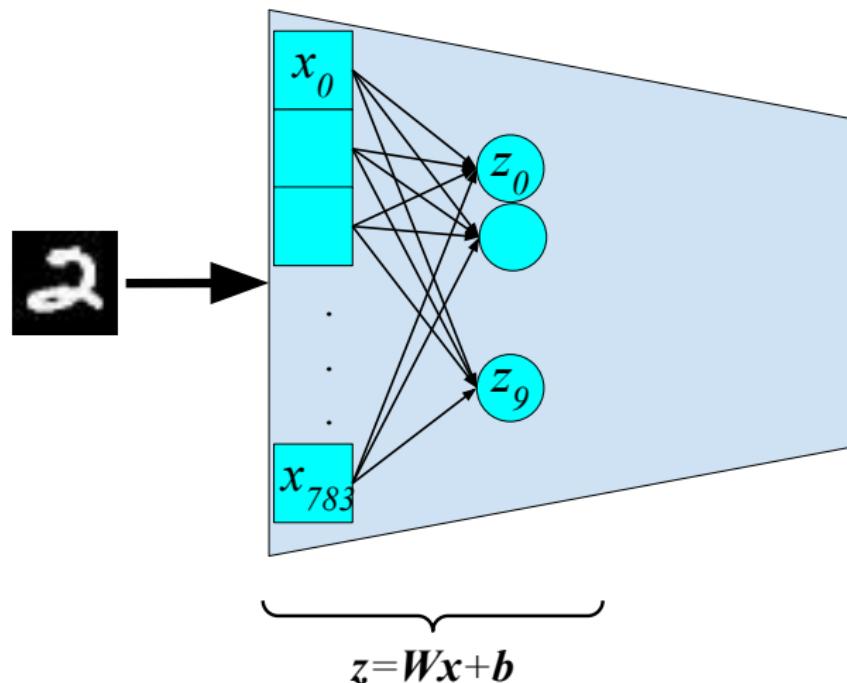


Figure: Logistic regression steps

# Logistic Regression Model

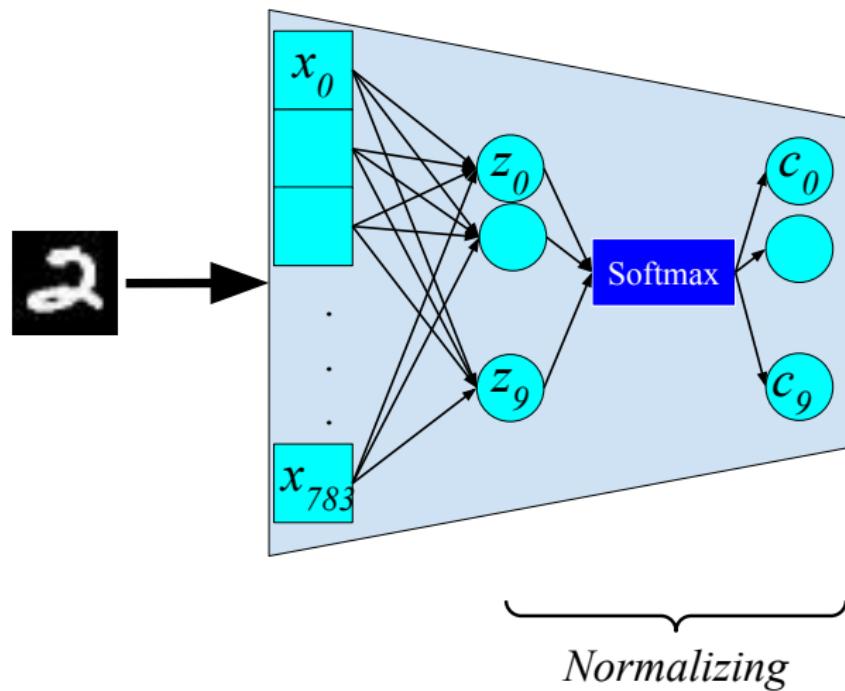


Figure: Logistic regression steps

# Logistic Regression Model

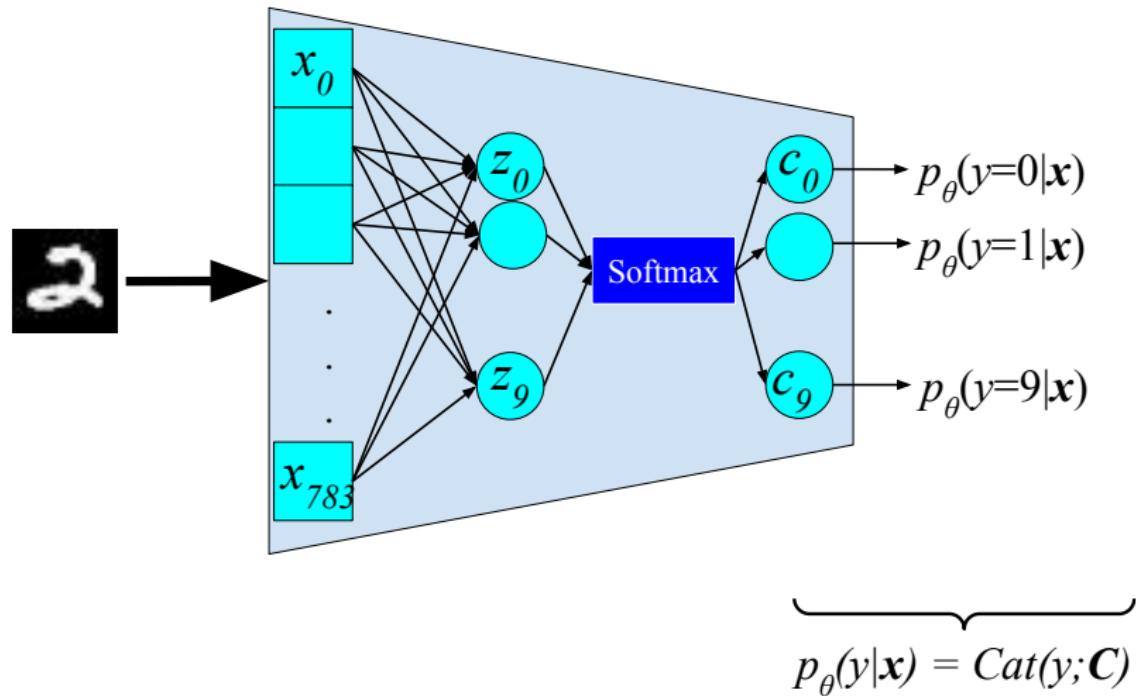
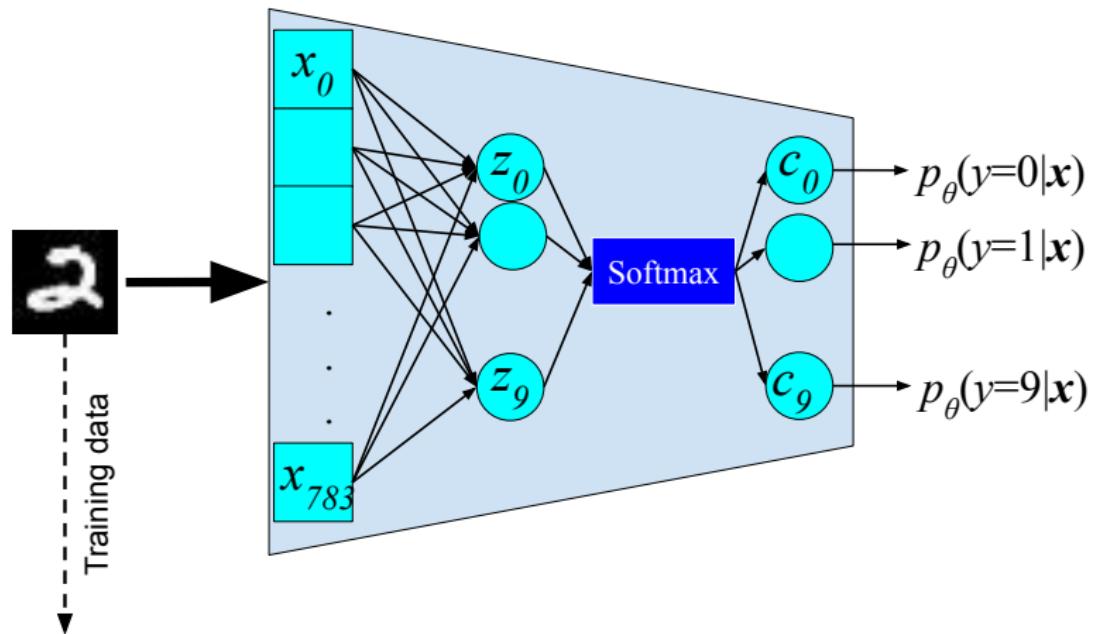


Figure: Logistic regression steps

# Logistic Regression Model



$$p_{data}(y|x) = \text{Cat}(y; [0,0,1,0,\dots,0])$$

$$p_\theta(y|x) = \text{Cat}(y; \mathbf{C})$$

Figure: Logistic regression steps

# Logistic Regression Model

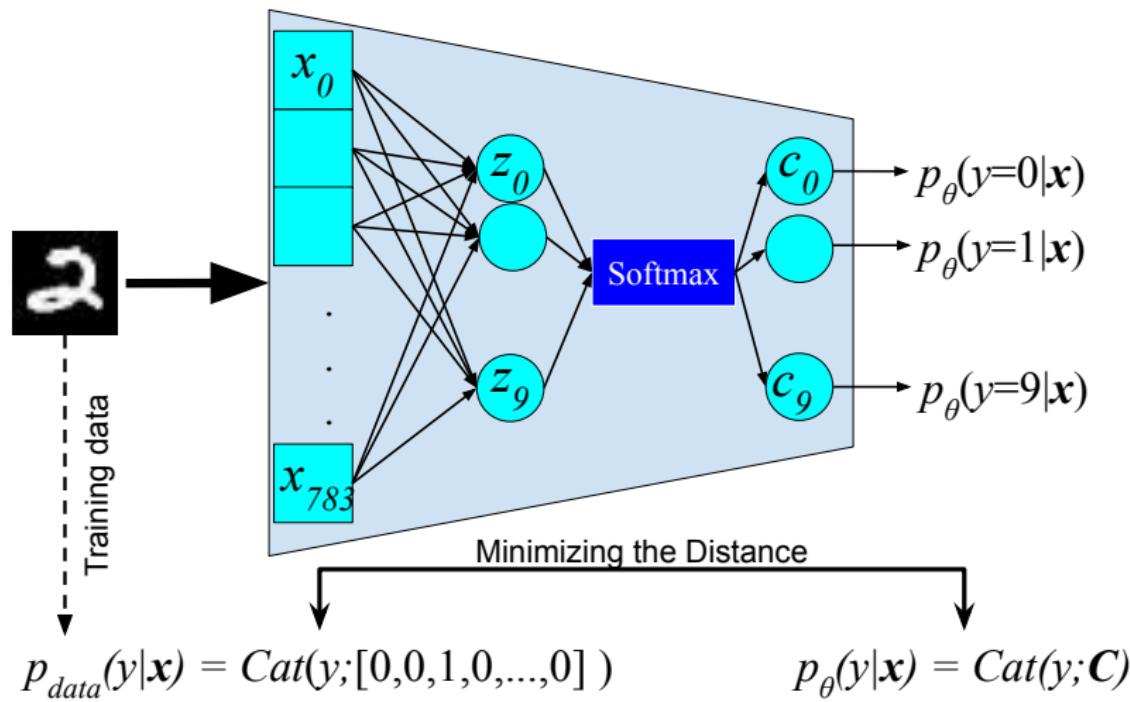


Figure: Logistic regression steps

## Distance Metric

One option for distance metric is:

## Distance Metric

One option for distance metric is:

$$L(\theta) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \text{KL} \left( p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right]$$

# Learning

## Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\boldsymbol{\theta}) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \text{KL} \left( p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[ \sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \end{aligned}$$

# Learning

## Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \text{KL} \left( p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[ \sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \\ &= \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\text{data}}(y|\mathbf{x})}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\text{data}}(y|\mathbf{x})]} \end{aligned}$$

# Learning

## Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \text{KL} \left( p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[ \sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \\ &= \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\text{data}}(y|\mathbf{x})}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\text{data}}(y|\mathbf{x})]} - \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\theta}(\mathbf{x}|y)}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y|\mathbf{x})]} \end{aligned}$$

# Learning

## Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \text{KL} \left( p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[ \sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \\ &= \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\text{data}}(y|\mathbf{x})}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\text{data}}(y|\mathbf{x})]} - \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\theta}(\mathbf{x}|y)}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y|\mathbf{x})]} \end{aligned}$$

While the second term is a function of your model parameters, the first one is independent of the selected Autoregressive model and thus can be omitted in optimization.

# Training

## Distance Metric

So:

$$\operatorname{argmax}_{\theta} L(\theta) = \operatorname{argmax}_{\theta} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y | \mathbf{x})]$$

# Training

## Distance Metric

So:

$$\operatorname{argmax}_{\theta} L(\theta) = \operatorname{argmax}_{\theta} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y | \mathbf{x})]$$

## Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

# Training

## Distance Metric

So:

$$\operatorname{argmax}_{\theta} L(\theta) = \operatorname{argmax}_{\theta} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y | \mathbf{x})]$$

## Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Now assume that instead of  $p(\mathbb{X})$ , we just have access to  $N$  independent samples of random variable  $\mathbb{X}$  as  $\mathbf{x}_1, \dots, \mathbf{x}_N$ .

# Training

## Distance Metric

So:

$$\operatorname{argmax}_{\boldsymbol{\theta}} L(\boldsymbol{\theta}) = \operatorname{argmax}_{\boldsymbol{\theta}} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\boldsymbol{\theta}}(y | \mathbf{x})]$$

## Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Now assume that instead of  $p(\mathbb{X})$ , we just have access to  $N$  independent samples of random variable  $\mathbb{X}$  as  $\mathbf{x}_1, \dots, \mathbf{x}_N$ . Then expectation can be approximated as:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] \simeq \frac{1}{N} \sum_n f(\mathbf{x}_n)$$

# Training

## Optimization

Using Monte-Carlo estimation, we have the following optimization problem:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\boldsymbol{\theta}}(y | \mathbf{x})]$$

# Training

## Optimization

Using Monte-Carlo estimation, we have the following optimization problem:

$$\begin{aligned}\boldsymbol{\theta}^* &= \operatorname{argmax}_{\boldsymbol{\theta}} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\boldsymbol{\theta}}(y | \mathbf{x})] \\ &\simeq \operatorname{argmax}_{\boldsymbol{\theta}} -\frac{1}{N} \sum_{i=1}^N \log p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i)\end{aligned}$$

# Sampling

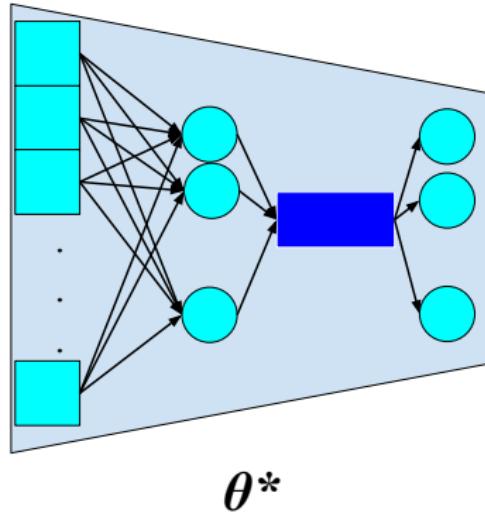


Figure: Sampling a trained model

# Sampling

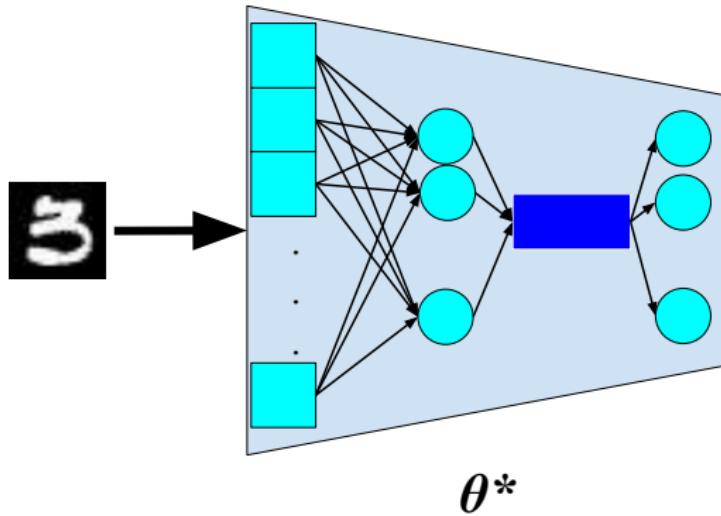


Figure: Sampling a trained model

# Sampling

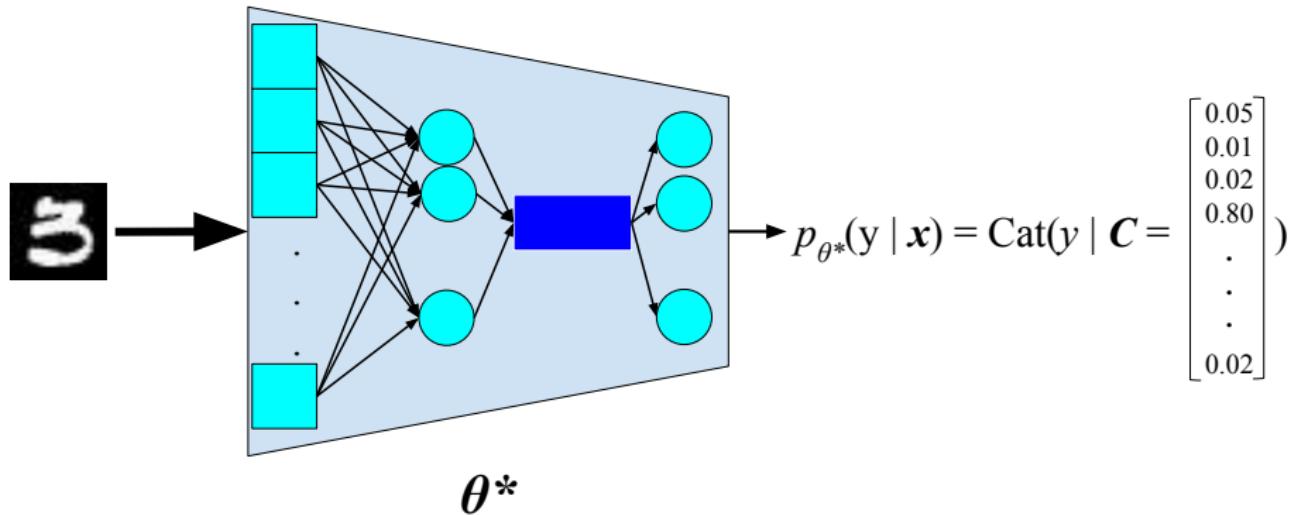


Figure: Sampling a trained model

# Sampling

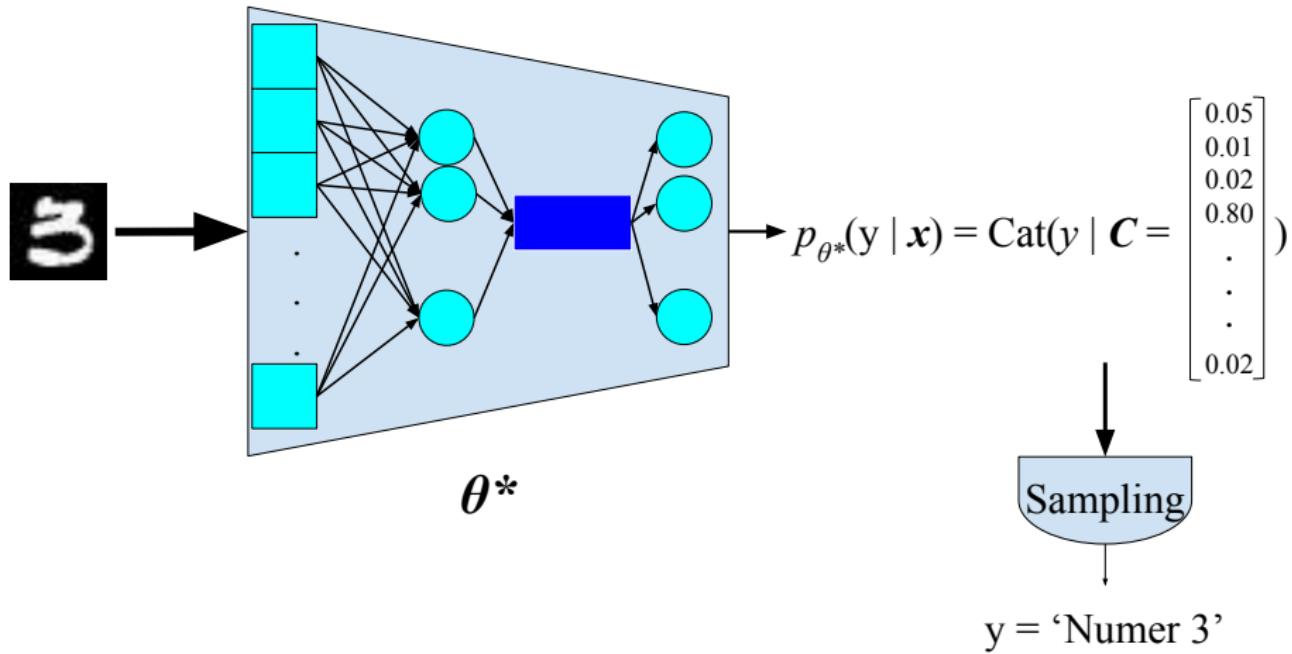


Figure: Sampling a trained model

# Sampling a Categorical Distribution

$$\text{Cat}(y \mid \mathbf{C} = \begin{bmatrix} c_0 = 0.1 \\ c_1 = 0.7 \\ c_2 = 0.2 \end{bmatrix})$$

**Figure:** Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution

$$\text{Cat}(y \mid \mathbf{C} = \begin{bmatrix} c_0 = 0.1 \\ c_1 = 0.7 \\ c_2 = 0.2 \end{bmatrix})$$

PMF

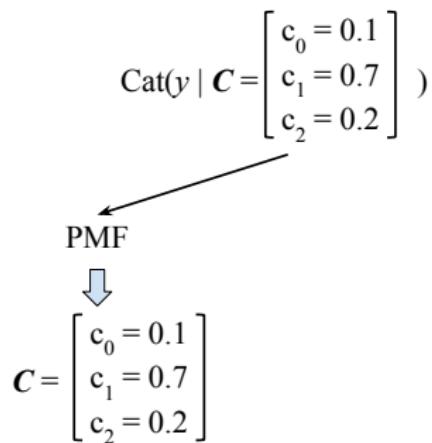

$$\mathbf{C} = \begin{bmatrix} c_0 = 0.1 \\ c_1 = 0.7 \\ c_2 = 0.2 \end{bmatrix}$$

Figure: Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution

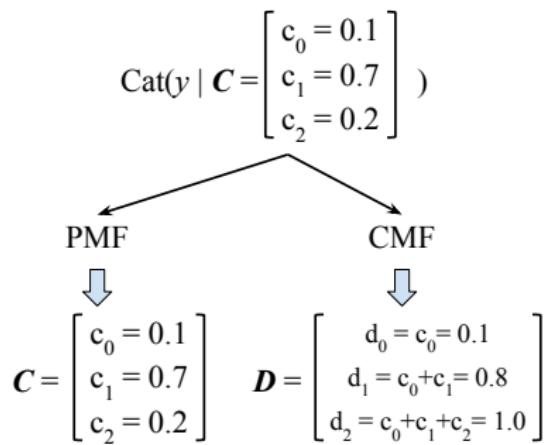


Figure: Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution

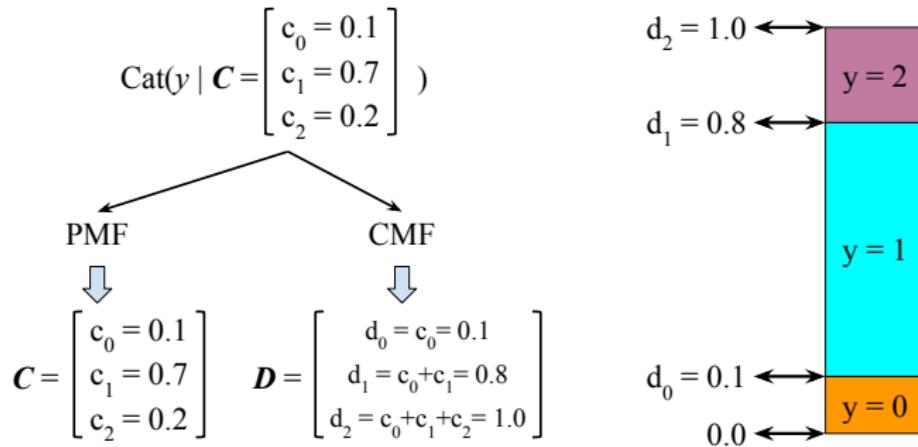


Figure: Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution

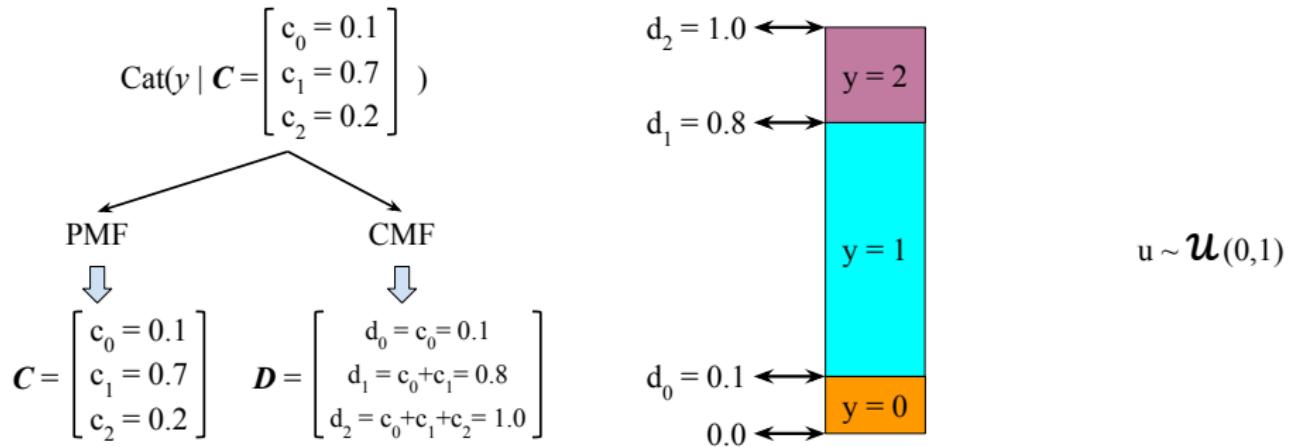
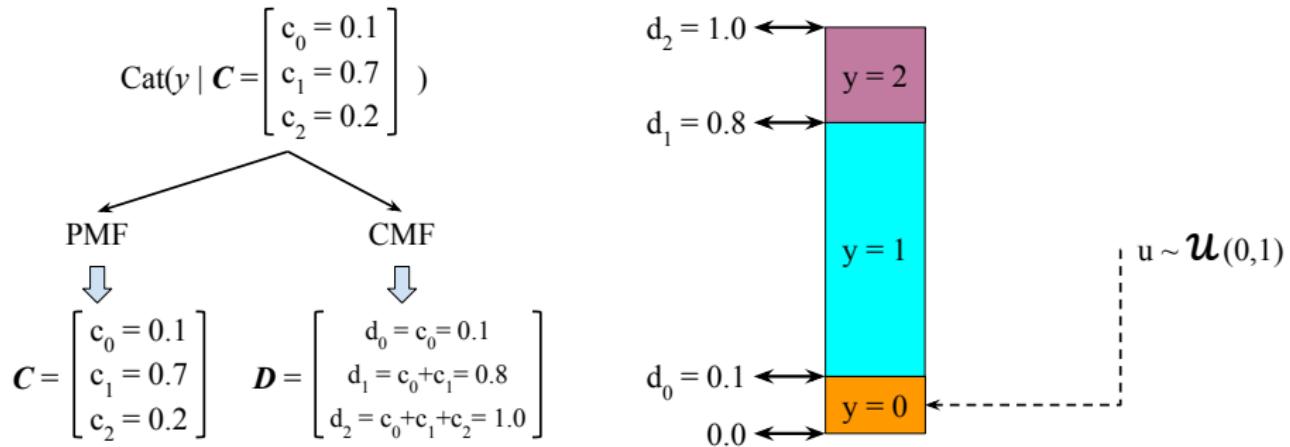


Figure: Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution



**Figure:** Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution

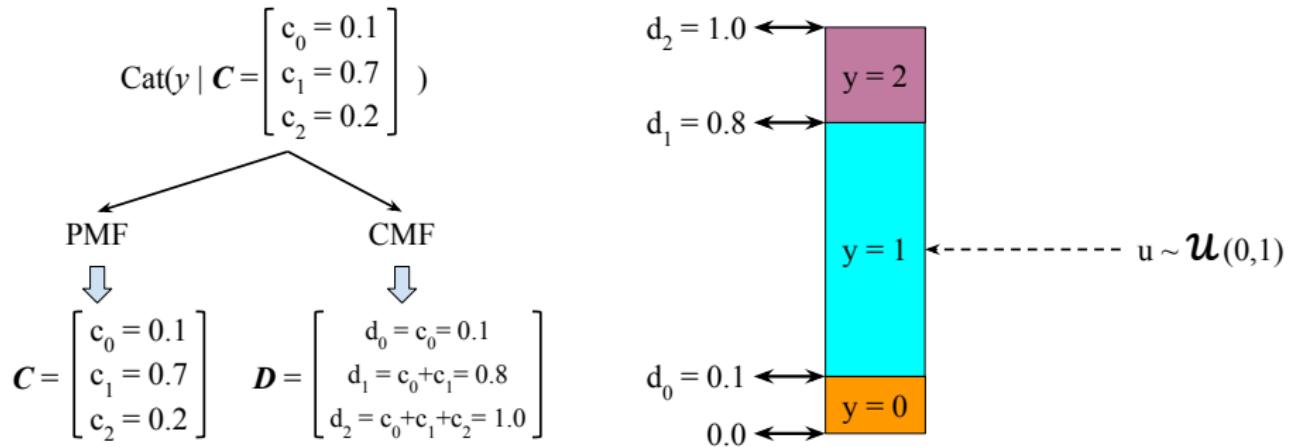
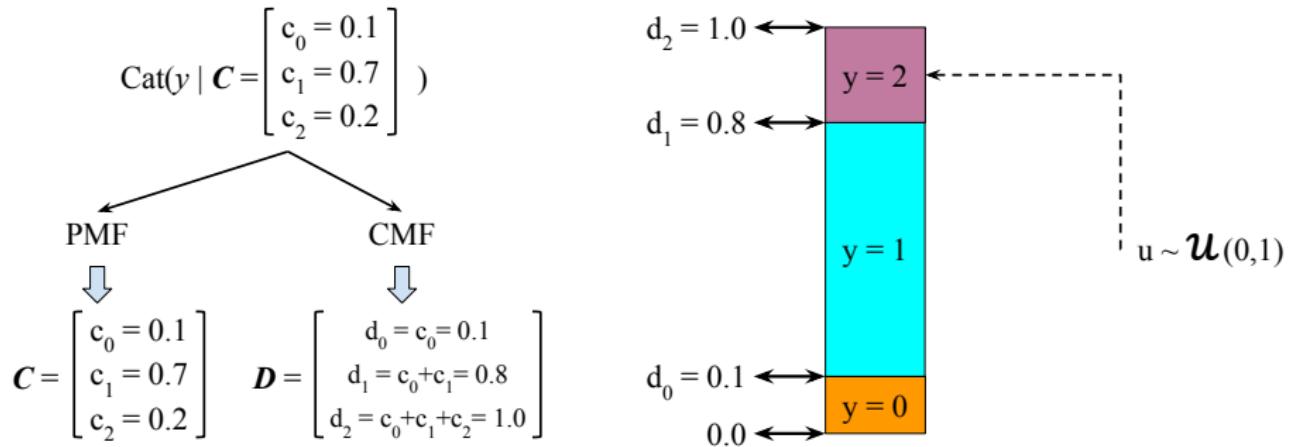


Figure: Sampling a categorical distribution using a Uniform sampler

# Sampling a Categorical Distribution



**Figure:** Sampling a categorical distribution using a Uniform sampler

## Subsection 2

### Deep Autoregressive Models

## Model Specification

Assume we just have MINST image  $\{\mathbf{x}_i\}_{i=1}^N$  without any label and we want to estimate generating distribution  $p(\mathbf{x})$  where  $\mathbf{x} \in \mathbb{R}^{784}$ .

## Model Specification

Assume we just have MINST image  $\{\mathbf{x}_i\}_{i=1}^N$  without any label and we want to estimate generating distribution  $p(\mathbf{x})$  where  $\mathbf{x} \in \mathbb{R}^{784}$ .

## Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model  $p_{\text{data}}(y|\mathbf{x})$  and  $y$  was a one-dimensional random variable, here  $\mathbf{x}$  is a high-dimensional random vector.

## Model Specification

Assume we just have MINST image  $\{\mathbf{x}_i\}_{i=1}^N$  without any label and we want to estimate generating distribution  $p(\mathbf{x})$  where  $\mathbf{x} \in \mathbb{R}^{784}$ .

## Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model  $p_{\text{data}}(y|\mathbf{x})$  and  $y$  was a one-dimensional random variable, here  $\mathbf{x}$  is a high-dimensional random vector.

- ☞ It seems that we can't use logistic regression here.

## Model Specification

Assume we just have MINST image  $\{\mathbf{x}_i\}_{i=1}^N$  without any label and we want to estimate generating distribution  $p(\mathbf{x})$  where  $\mathbf{x} \in \mathbb{R}^{784}$ .

## Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model  $p_{\text{data}}(y|\mathbf{x})$  and  $y$  was a one-dimensional random variable, here  $\mathbf{x}$  is a high-dimensional random vector.

- ☞ It seems that we can't use logistic regression here.
- ☞ We can model each dimension separately because  $x_i \in \{0, 1, 2, \dots, 255\}$

## Model Specification

Assume we just have MINST image  $\{\mathbf{x}_i\}_{i=1}^N$  without any label and we want to estimate generating distribution  $p(\mathbf{x})$  where  $\mathbf{x} \in \mathbb{R}^{784}$ .

## Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model  $p_{\text{data}}(y|\mathbf{x})$  and  $y$  was a one-dimensional random variable, here  $\mathbf{x}$  is a high-dimensional random vector.

- ☞ It seems that we can't use logistic regression here.
- ☞ We can model each dimension separately because  $x_i \in \{0, 1, 2, \dots, 255\}$

## Chain Rule

Based on the chain rule, we have:

$$p(\mathbf{x}) = p(x_1)p(x_2|\mathbf{x}_{<2}) \dots p(x_d|\mathbf{x}_{} \triangleq [x_1, \dots, x_{d-1}]^T$$

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{$$

Figure: Using logistic regression for generative modeling

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{$$

Figure: Using logistic regression for generative modeling

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{$$

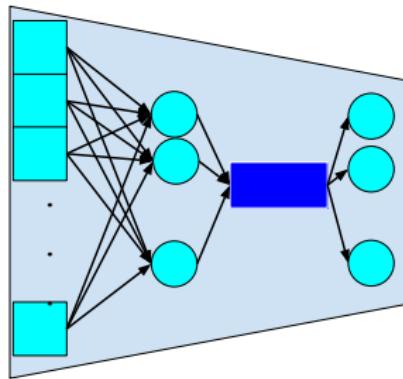
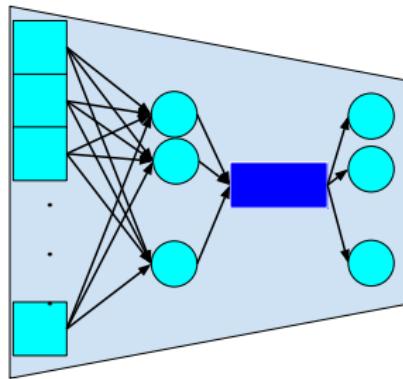


Figure: Using logistic regression for generative modeling

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{$$



$$\mathbf{W}_d, \mathbf{b}_d$$

Figure: Using logistic regression for generative modeling

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$

**Figure:** Using logistic regression for generative modeling

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$


$b_0$

Figure: Using logistic regression for generative modeling

# Modeling

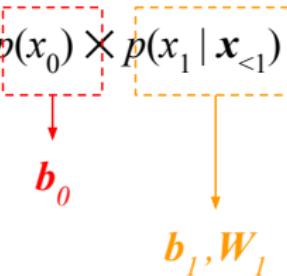
$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$


Diagram illustrating the decomposition of a joint probability  $p(\mathbf{x})$  into a product of conditional probabilities. The first term  $p(x_0)$  is highlighted with a red dashed box and points to a red  $b_0$ . The second term  $p(x_1 | \mathbf{x}_{<1})$  is highlighted with an orange dashed box and points to orange  $b_1, W_1$ .

Figure: Using logistic regression for generative modeling

# Modeling

$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$

The diagram illustrates the decomposition of a joint probability  $p(\mathbf{x})$  into a product of conditional probabilities. The terms  $p(x_0)$ ,  $p(x_1 | \mathbf{x}_{<1})$ ,  $\dots$ ,  $p(x_d | \mathbf{x}_{<d})$ ,  $\dots$ , and  $p(x_{D-1} | \mathbf{x}_{<D-1})$  are shown as factors in the product. Each term is enclosed in a dashed box of a specific color: red for  $p(x_0)$ , orange for  $p(x_1 | \mathbf{x}_{<1})$ , and blue for the remaining terms. Below each dashed box, there is a corresponding label:  $b_0$  for the red box,  $b_1, W_1$  for the orange box, and  $b_d, W_d$  for the blue box. Arrows point from each dashed box to its corresponding label.

Figure: Using logistic regression for generative modeling

# Modeling

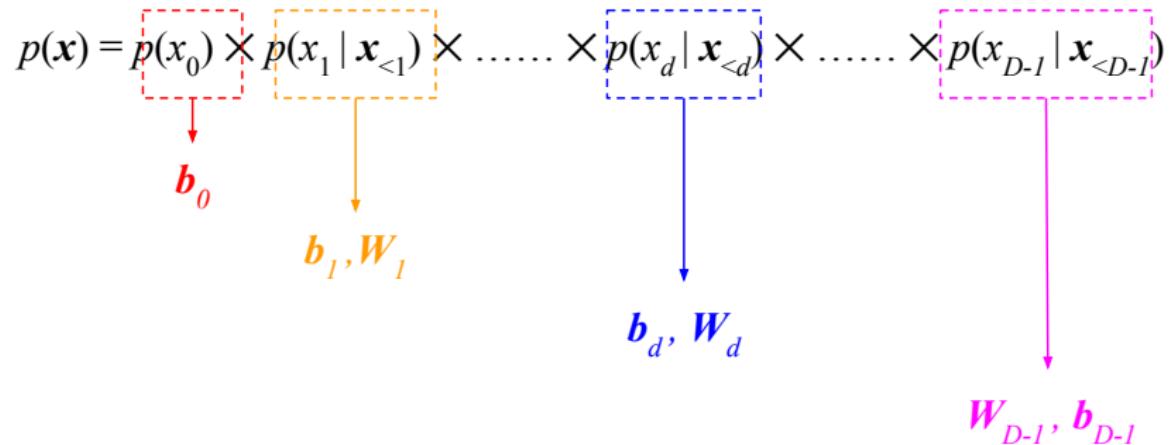
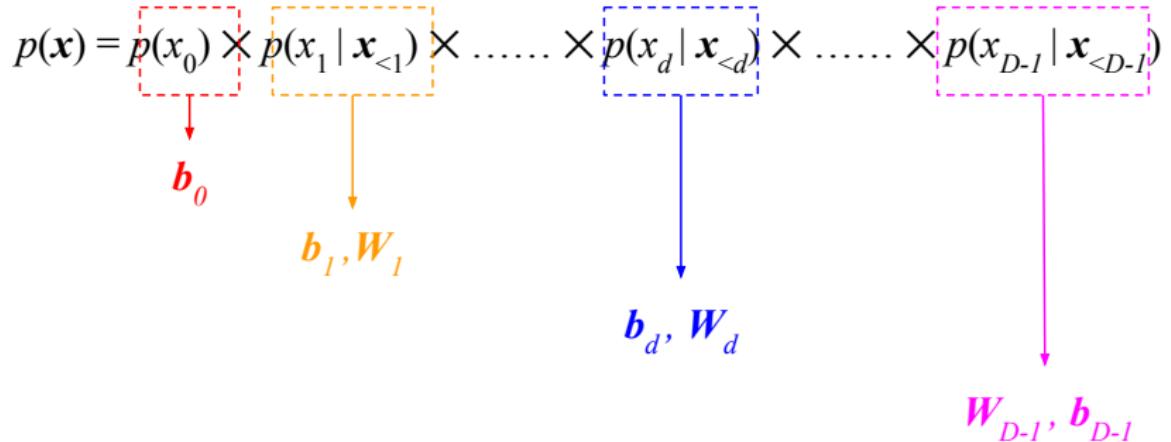


Figure: Using logistic regression for generative modeling

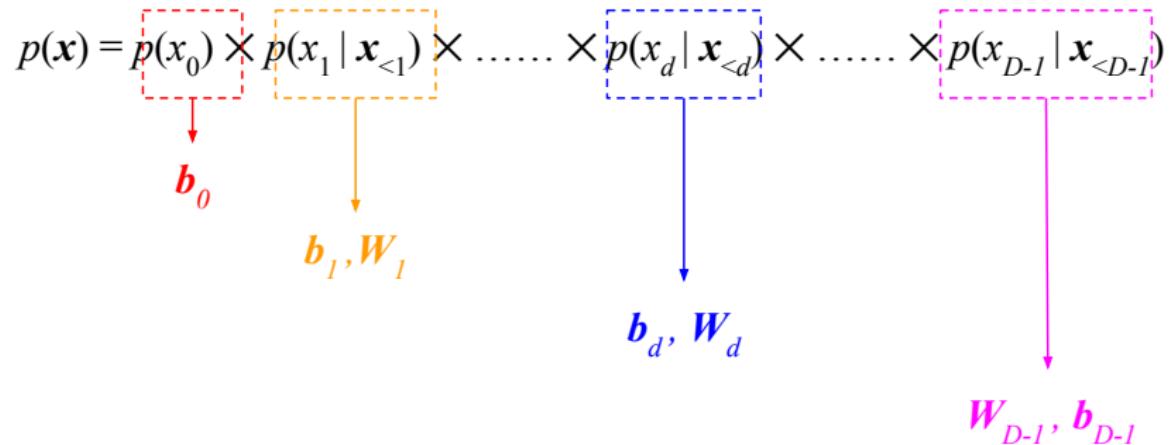
# Modeling



$$x_d \in \{0, 1, \dots, 255\} \Rightarrow \begin{cases} \mathbf{b}_d \in R^{256} \\ \mathbf{W}_d \in R^{256 \times d} \end{cases} \quad \forall \quad 0 \leq d \leq D-1$$

Figure: Using logistic regression for generative modeling

# Modeling



$$\boldsymbol{\theta} = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

Figure: Using logistic regression for generative modeling

# Distance Metric

## Distance Metric

We want to compare two distributions  $p_{\text{data}}$  and  $p_{\theta}$ , thus we can use KL divergence as:

$$L(\theta) = \text{KL}(p_{\text{data}} \| p_{\theta}) =$$

## Distance Metric

We want to compare two distributions  $p_{\text{data}}$  and  $p_{\theta}$ , thus we can use KL divergence as:

$$L(\boldsymbol{\theta}) = \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \log \left( \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right]$$

## Distance Metric

We want to compare two distributions  $p_{\text{data}}$  and  $p_{\theta}$ , thus we can use KL divergence as:

$$L(\boldsymbol{\theta}) = \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \log \left( \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right]$$

We can rewrite  $L(\boldsymbol{\theta})$  as:

$$L(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\text{data}}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

# Distance Metric

## Distance Metric

We want to compare two distributions  $p_{\text{data}}$  and  $p_{\theta}$ , thus we can use KL divergence as:

$$L(\boldsymbol{\theta}) = \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[ \log \left( \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right]$$

We can rewrite  $L(\boldsymbol{\theta})$  as:

$$L(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\text{data}}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Because the first term on the right-hand side is independent of  $\boldsymbol{\theta}$ , we have:

$$\boldsymbol{\theta}^* = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[ \log \left( \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right] \equiv \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

# From KL divergence to Model Likelihood

## Model Likelihood

We see:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\boldsymbol{\theta}}(\mathbf{x})]$$

Thus:

# From KL divergence to Model Likelihood

## Model Likelihood

We see:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\boldsymbol{\theta}}(\mathbf{x})]$$

Thus:

- Desirable situation is when  $p_{\boldsymbol{\theta}}(\mathbb{X})$  assign high probability to probable regions in  $p_{\text{data}}(\mathbb{X})$

# From KL divergence to Model Likelihood

## Model Likelihood

We see:

$$\theta^* = \operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Thus:

- Desirable situation is when  $p_{\theta}(\mathbb{X})$  assign high probability to probable regions in  $p_{\text{data}}(\mathbb{X})$
- We have yet a problem: No access to  $p_{\text{data}}$

# Training

## Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

# Training

## Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Now assume that instead of  $p(\mathbb{X})$ , we just have access to  $N$  independent samples of random variable  $\mathbb{X}$  as  $\mathbf{x}_1, \dots, \mathbf{x}_N$ .

# Training

## Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Now assume that instead of  $p(\mathbb{X})$ , we just have access to  $N$  independent samples of random variable  $\mathbb{X}$  as  $\mathbf{x}_1, \dots, \mathbf{x}_N$ . Then expectation can be approximated as:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] \simeq \frac{1}{N} \sum_n f(\mathbf{x}_n)$$

# Model Likelihood Estimation

## Model Likelihood Estimation

We are interested in solving the following problem:

$$\theta^* = \operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\theta}(\mathbf{x})]$$

but we don't have access to  $p_{\text{data}}$  and instead, we have access to independent samples from the distribution  $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$ .

# Model Likelihood Estimation

## Model Likelihood Estimation

We are interested in solving the following problem:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\boldsymbol{\theta}}(\mathbf{x})]$$

but we don't have access to  $p_{\text{data}}$  and instead, we have access to independent samples from the distribution  $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$ .

## Solution via Monte Carlo Estimate

Using the Monte Carlo estimate we have:

$$\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\boldsymbol{\theta}}(\mathbf{x})] \simeq \frac{1}{N} \sum_{n=1}^N \log p_{\boldsymbol{\theta}}(\mathbf{x}_n)$$

Thus:

$$\boldsymbol{\theta}^* = \operatorname{argmax}_{\boldsymbol{\theta}} \frac{1}{N} \sum_{n=1}^N \log p_{\boldsymbol{\theta}}(\mathbf{x}_n)$$

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-p}, \mathbf{W}_{D-p} \}$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

**$x$**

$$x_0 = 255$$

$$x_1 = 126$$

⋮

$$x_{d-1} = 65$$

$$x_d = 23$$

⋮

$$x_{D-1} = 0$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$

$$x_0 = 255$$

$$x_1 = 126$$

⋮

$$x_{d-1} = 65$$

$$x_d = 23$$

⋮

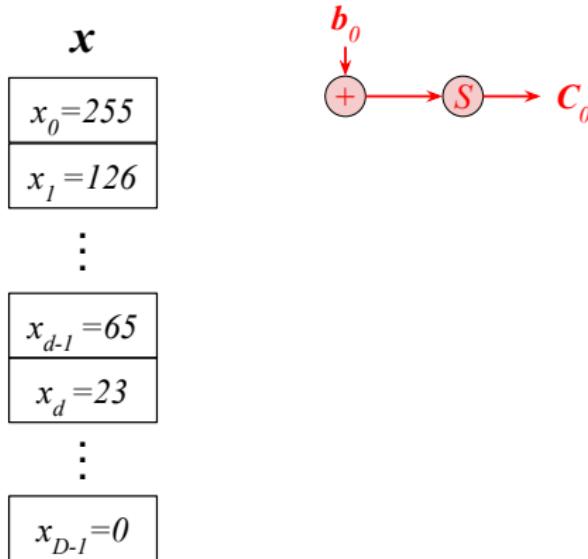
$$x_{D-1} = 0$$

$$p(\mathbf{x}) = p(x_0)p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

**Figure:** Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

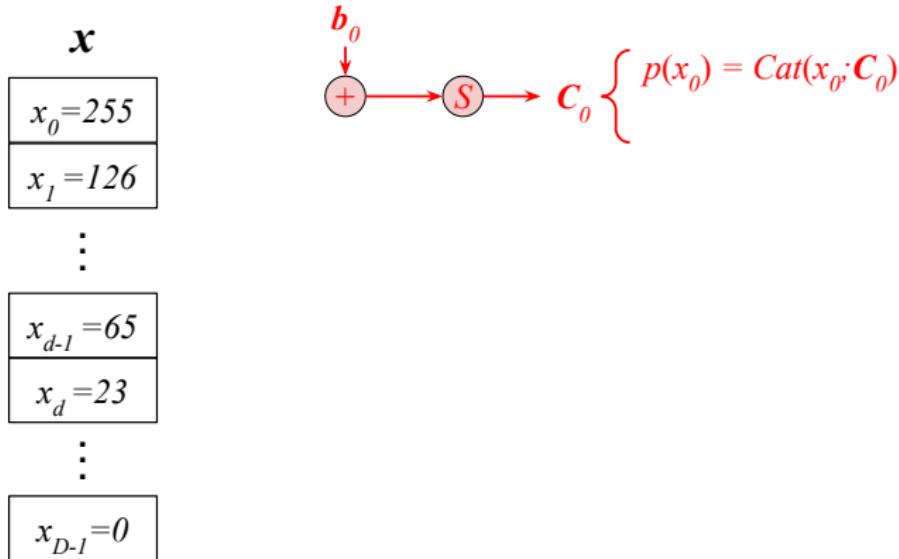


$$p(\mathbf{x}) = p(x_0)p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-I}, \mathbf{W}_{D-I} \}$$

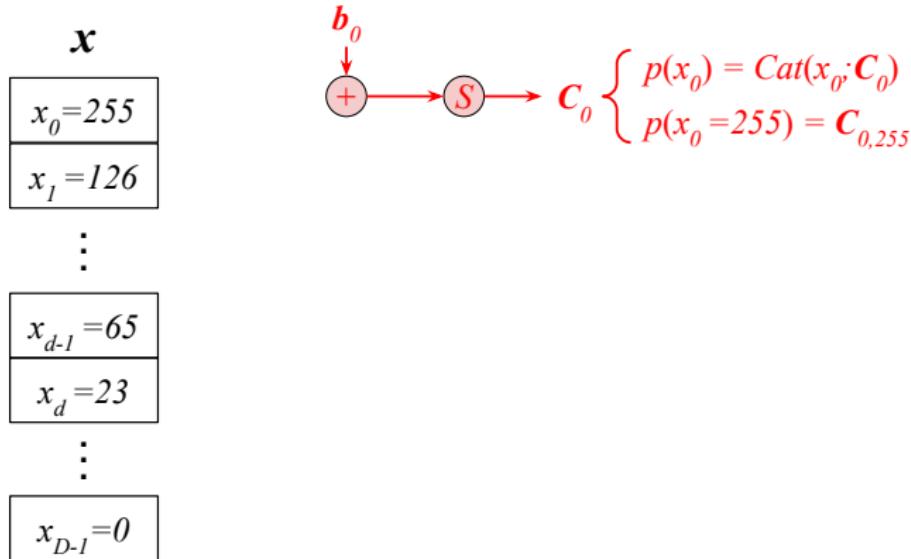


$$p(\mathbf{x}) = p(x_0)p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-I} | \mathbf{x}_{<D-I})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

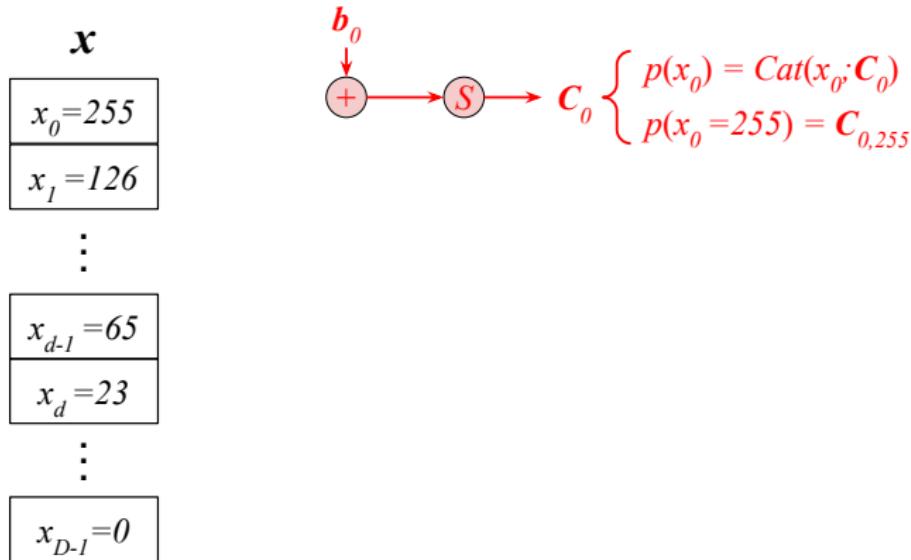


$$p(\mathbf{x}) = p(x_0)p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

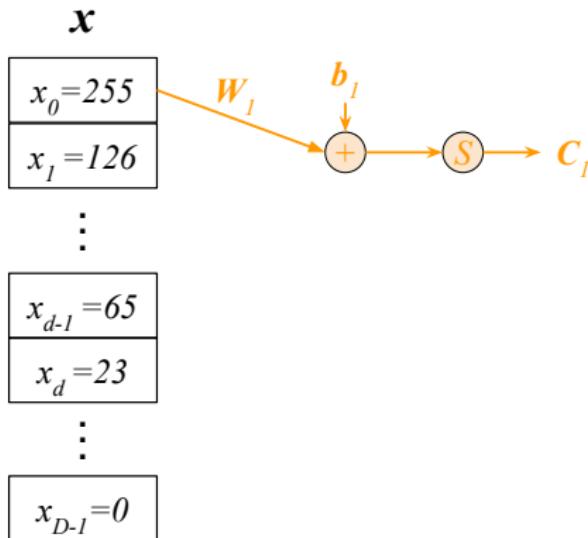


$$p(\mathbf{x}) = \mathbf{C}_{0,255} p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

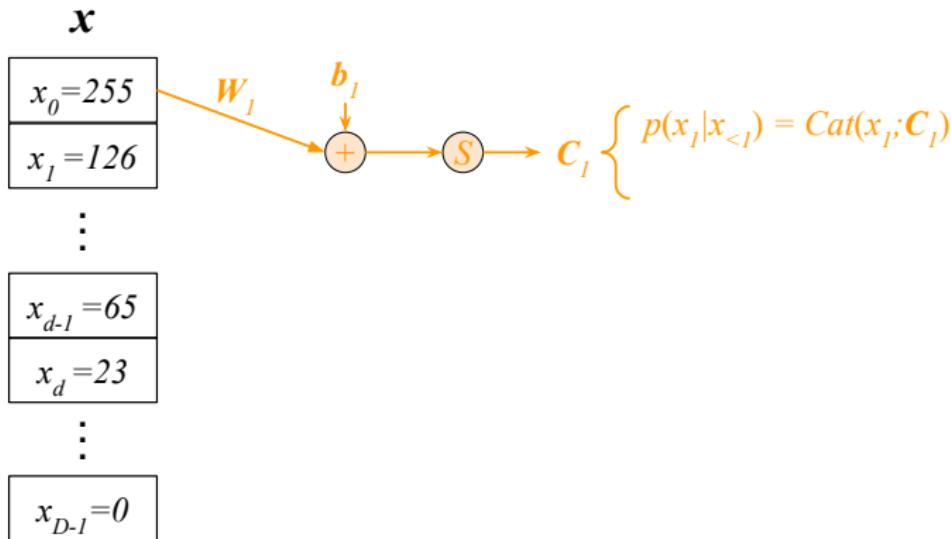


$$p(\mathbf{x}) = \mathbf{C}_{0,255} p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$



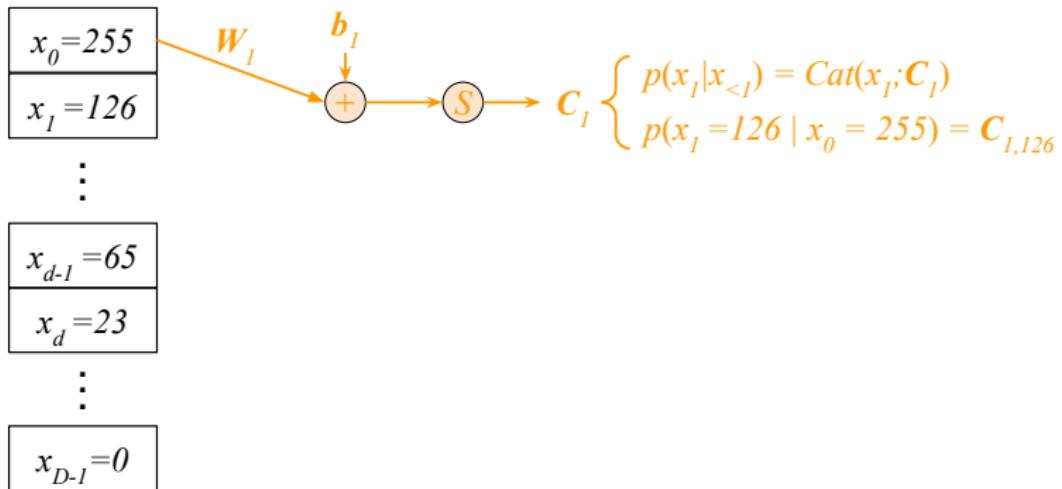
$$p(\mathbf{x}) = \mathbf{C}_{0,255} p(x_1 | x_{<1}) \dots p(x_d | x_{<d}) \dots p(x_{D-1} | x_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$



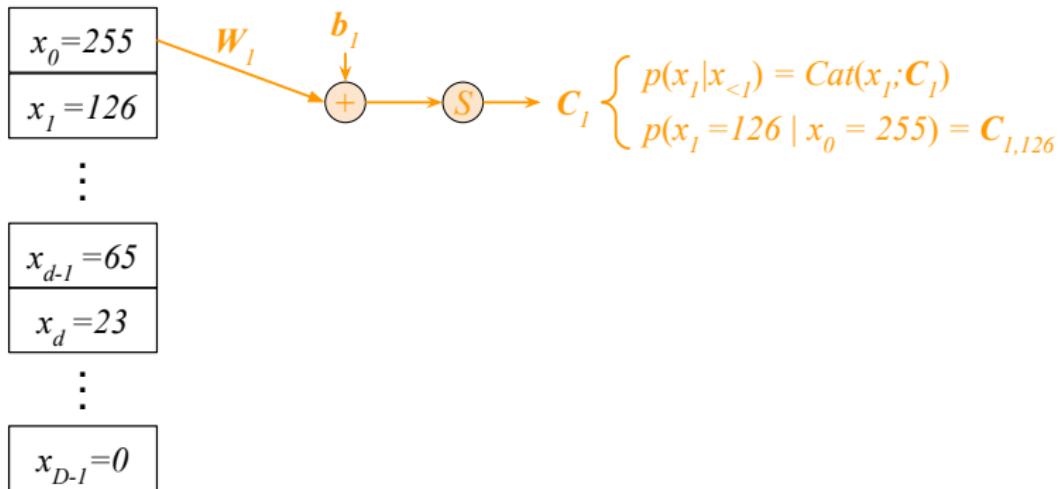
$$p(\mathbf{x}) = \mathbf{C}_{0,255} p(x_1 | \mathbf{x}_{<1}) \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$



$$p(\mathbf{x}) = \mathbf{C}_{0,255} \ \mathbf{C}_{1,126} \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$

$$\begin{bmatrix} x_0 = 255 \\ x_1 = 126 \end{bmatrix}$$

$\vdots$

$$\mathbf{W}_{d-1,0}$$

$$\begin{bmatrix} x_{d-1} = 65 \\ x_d = 23 \end{bmatrix}$$

$\vdots$

$$\begin{bmatrix} x_{D-1} = 0 \end{bmatrix}$$

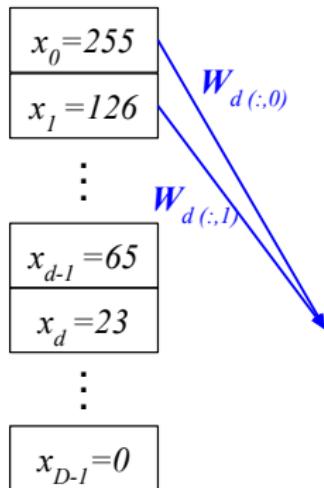
$$p(\mathbf{x}) = \mathbf{C}_{0,255} \ \mathbf{C}_{1,126} \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$



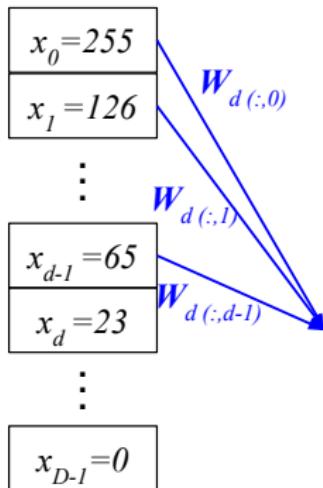
$$p(\mathbf{x}) = \mathbf{C}_{0,255} \ \mathbf{C}_{1,126} \dots p(x_d | \mathbf{x}_{)} \dots p(x_{D-1} | \mathbf{x}_{)})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$



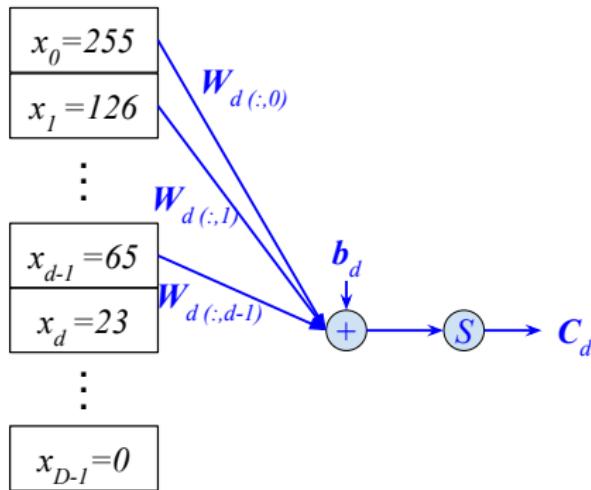
$$p(\mathbf{x}) = \mathbf{C}_{0,255} \ \mathbf{C}_{1,126} \dots p(x_d | \mathbf{x}_{)} \dots p(x_{D-1} | \mathbf{x}_{)})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$



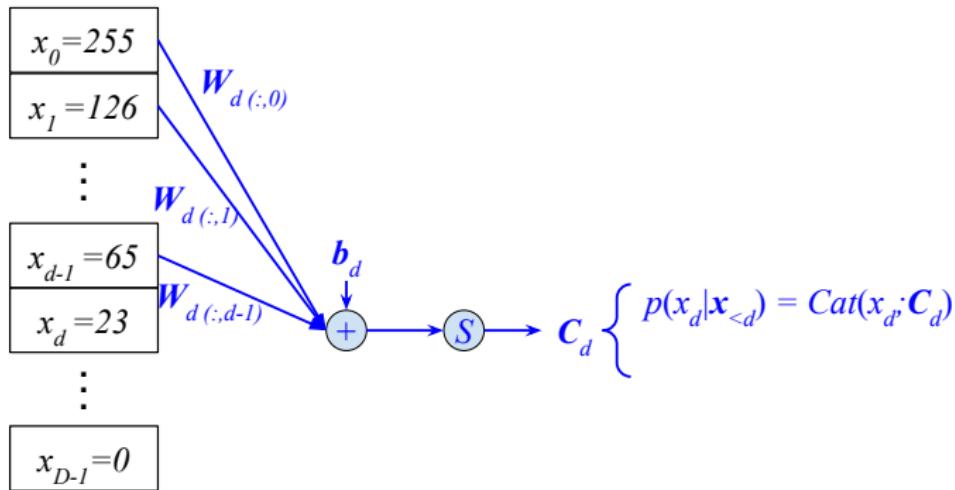
$$p(\mathbf{x}) = \mathbf{C}_{0,255} \ \mathbf{C}_{1,126} \dots p(x_d | \mathbf{x}_{)} \dots p(x_{D-1} | \mathbf{x}_{)})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-p}, \mathbf{W}_{D-p} \}$$

$\mathbf{x}$



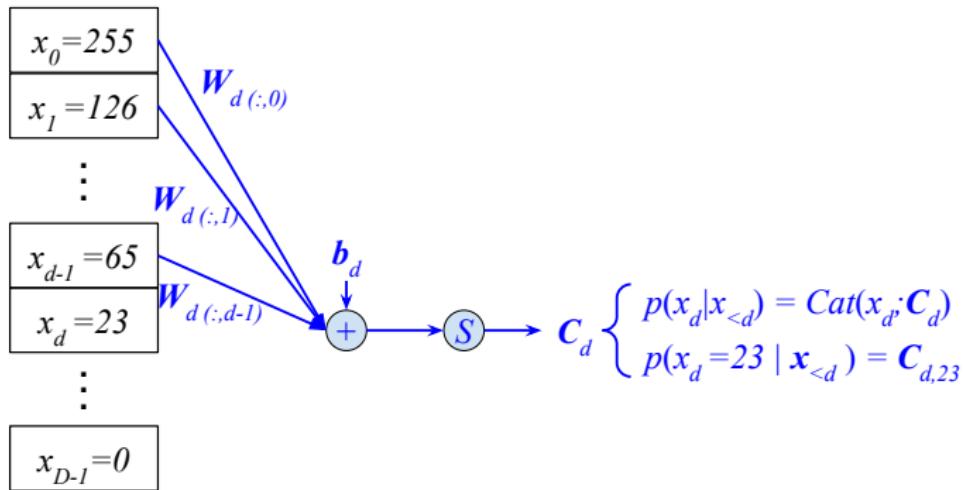
$$p(\mathbf{x}) = \mathbf{C}_{0,255} \mathbf{C}_{1,126} \dots p(x_d | \mathbf{x}_{<d}) \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

$\mathbf{x}$

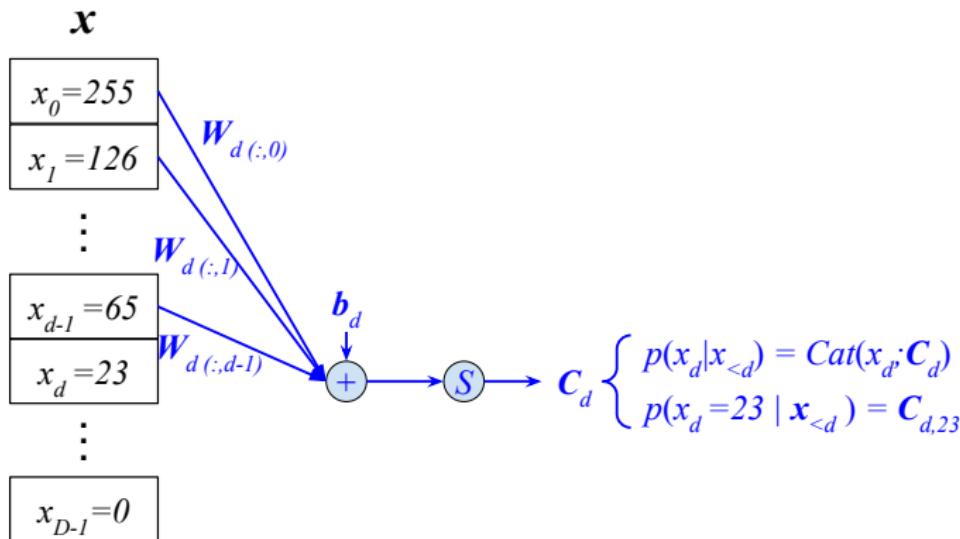


$$p(\mathbf{x}) = \mathbf{C}_{0,255} \mathbf{C}_{1,126} \dots p(x_d | x_{<d}) \dots p(x_{D-1} | x_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

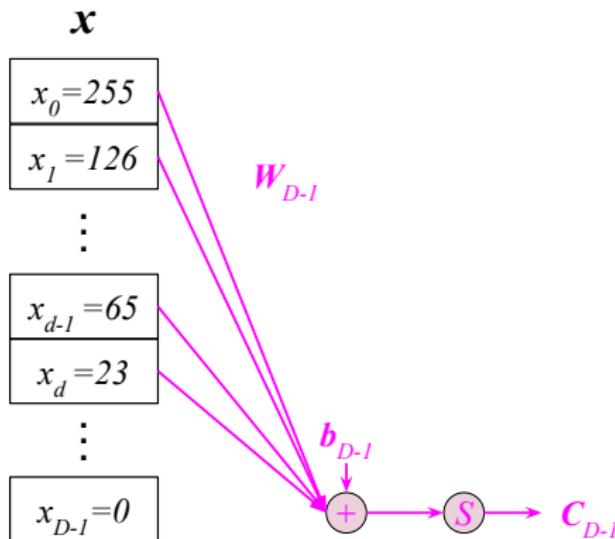


$$p(\mathbf{x}) = \mathbf{C}_{0,255} \mathbf{C}_{1,126} \dots \mathbf{C}_{d,23} \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$



$$p(\mathbf{x}) = \mathbf{C}_{0,255} \mathbf{C}_{1,126} \dots \mathbf{C}_{d,23} \dots p(x_{D-1} | \mathbf{x}_{<D-1})$$

Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

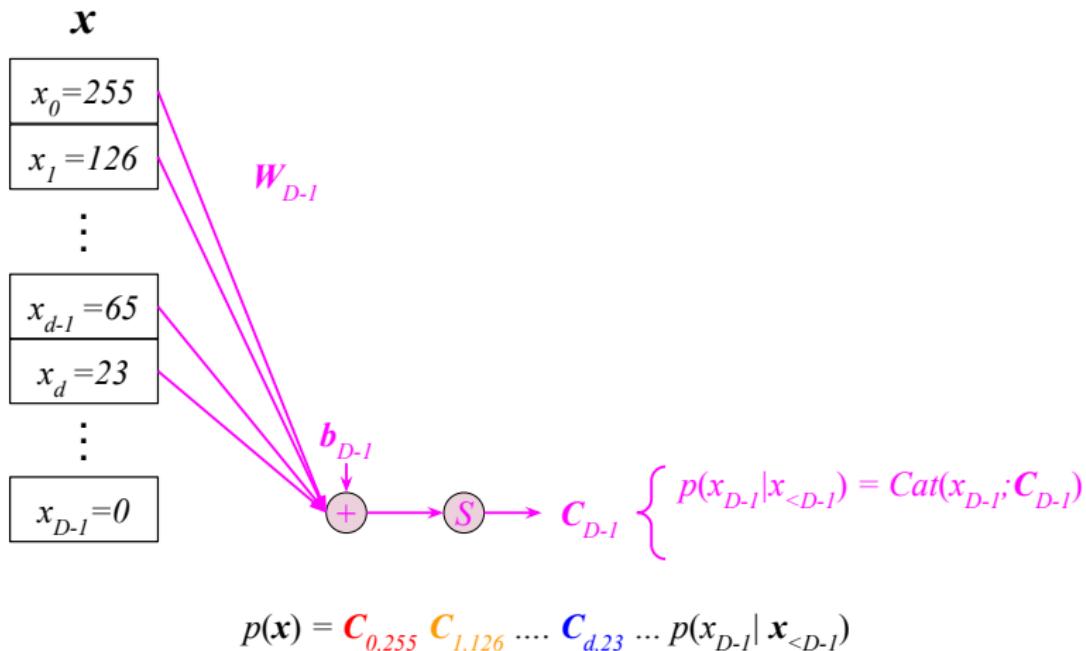


Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$

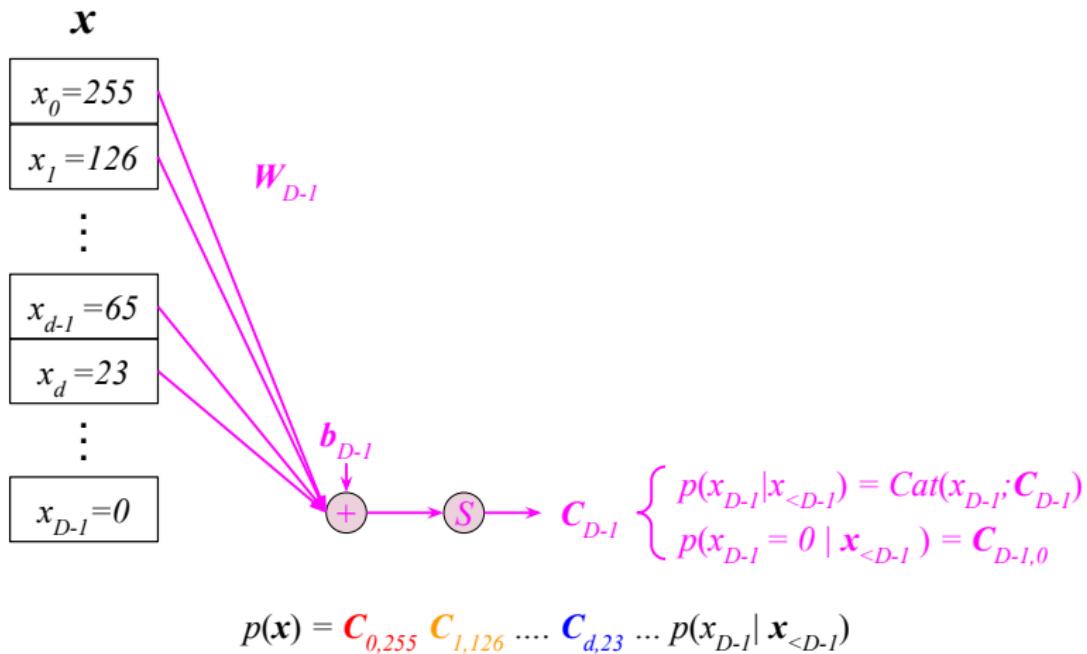


Figure: Calculating the likelihood as a function of model parameters

# Parametric Density Calculation

$$\theta = \{ \mathbf{b}_0, \mathbf{b}_1, \mathbf{W}_1, \dots, \mathbf{b}_d, \mathbf{W}_d, \dots, \mathbf{b}_{D-1}, \mathbf{W}_{D-1} \}$$



Figure: Calculating the likelihood as a function of model parameters

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-P}^*, \mathbf{W}_{D-P}^* \}$$

Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-1}^\star, \mathbf{W}_{D-1}^\star \}$$

$\mathbf{x}$

$$\begin{array}{|c|} \hline x_0 = ? \\ \hline \end{array}$$

$$\begin{array}{|c|} \hline x_1 = ? \\ \hline \end{array}$$

⋮

$$\begin{array}{|c|} \hline x_{d-1} = ? \\ \hline \end{array}$$

$$\begin{array}{|c|} \hline x_d = ? \\ \hline \end{array}$$

⋮

$$\begin{array}{|c|} \hline x_{D-1} = ? \\ \hline \end{array}$$

Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

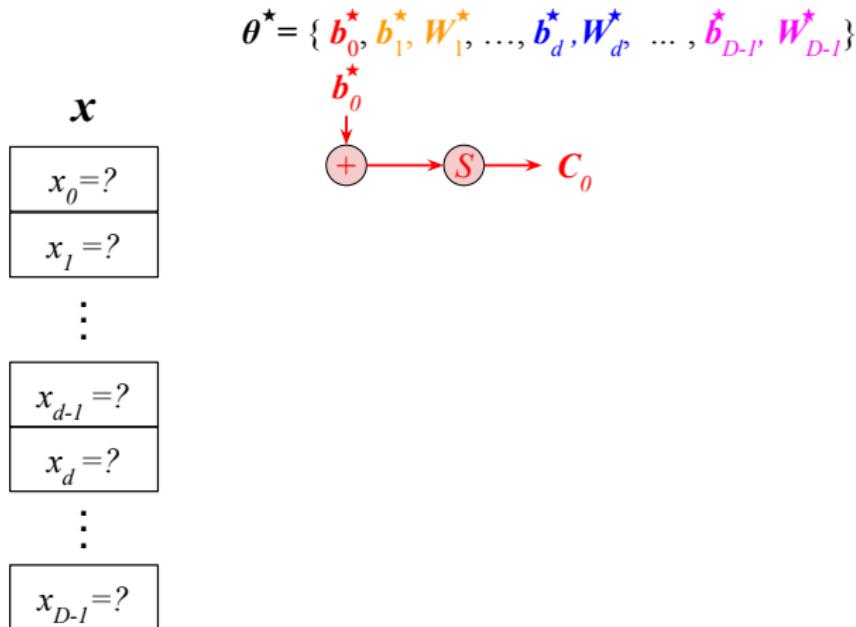


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

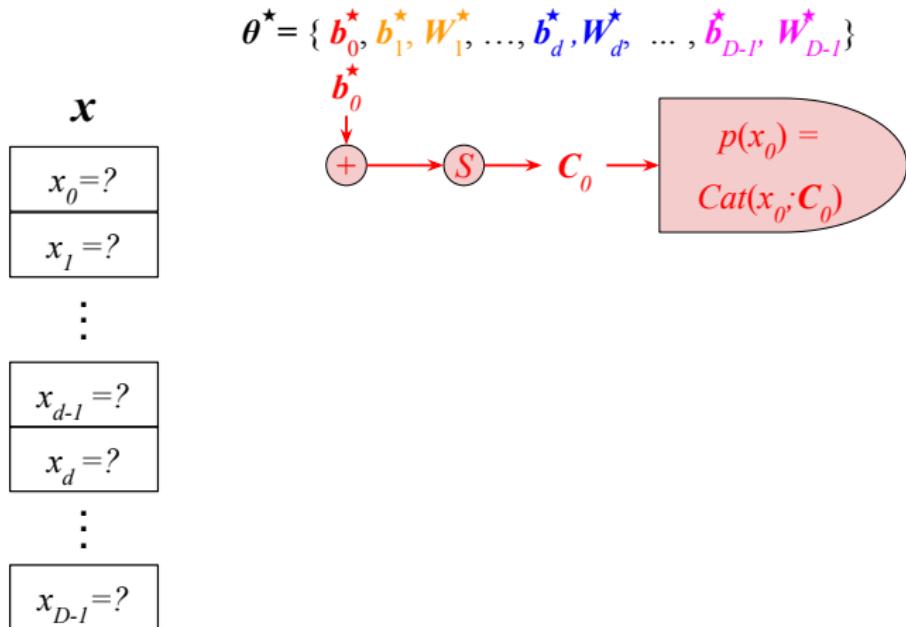


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

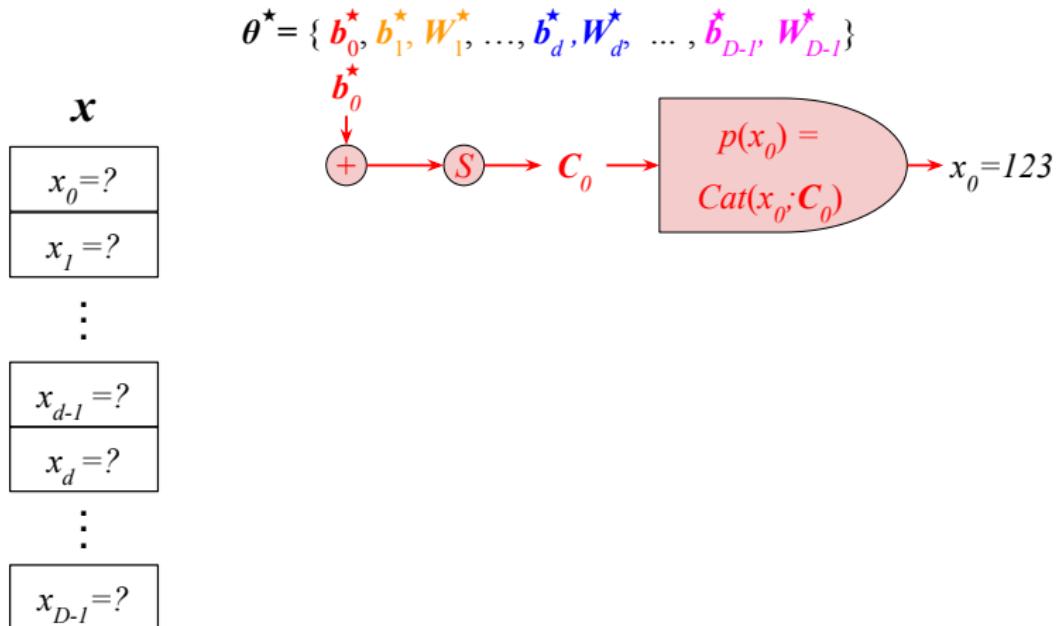


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

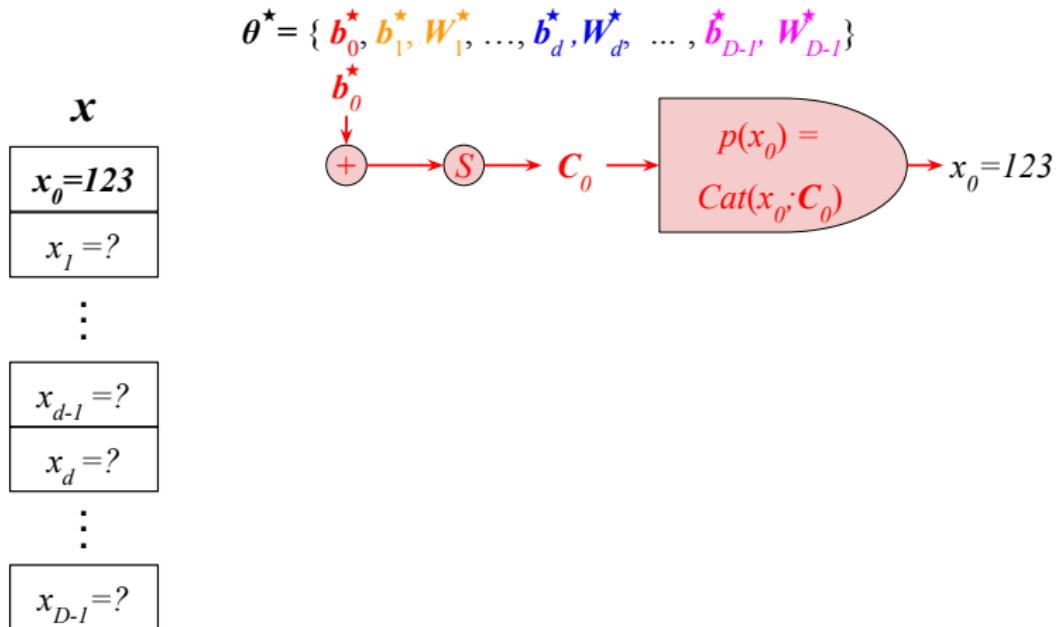


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-1}^*, \mathbf{W}_{D-1}^* \}$$

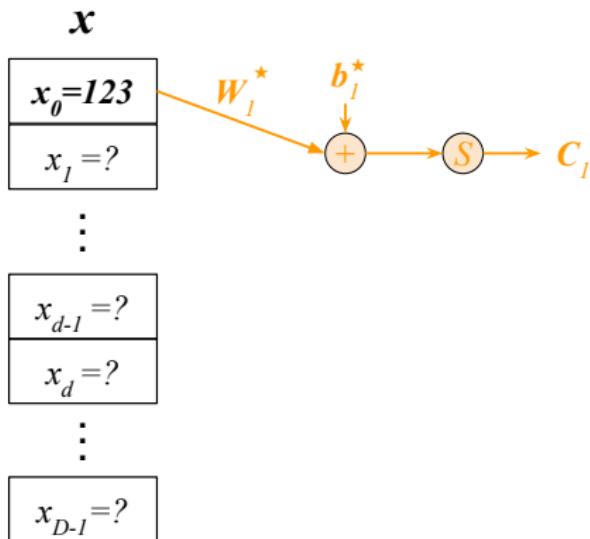


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-1}^\star, \mathbf{W}_{D-1}^\star \}$$

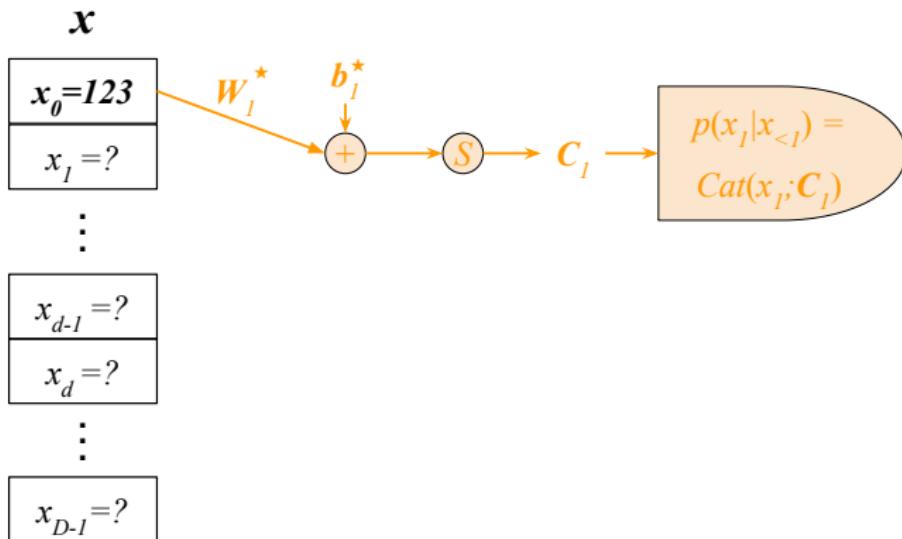


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-I}^\star, \mathbf{W}_{D-I}^\star \}$$

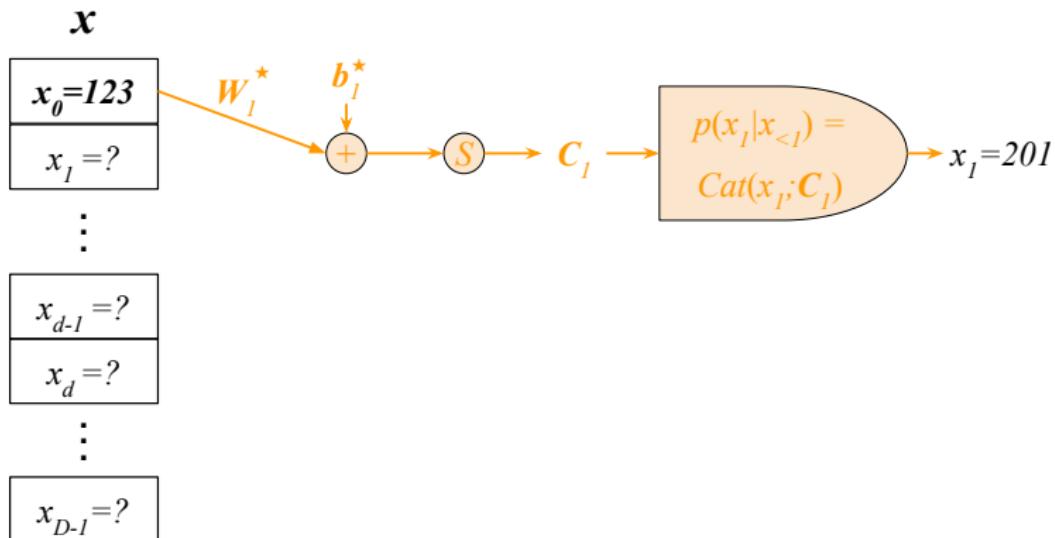


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-1}^*, \mathbf{W}_{D-1}^* \}$$

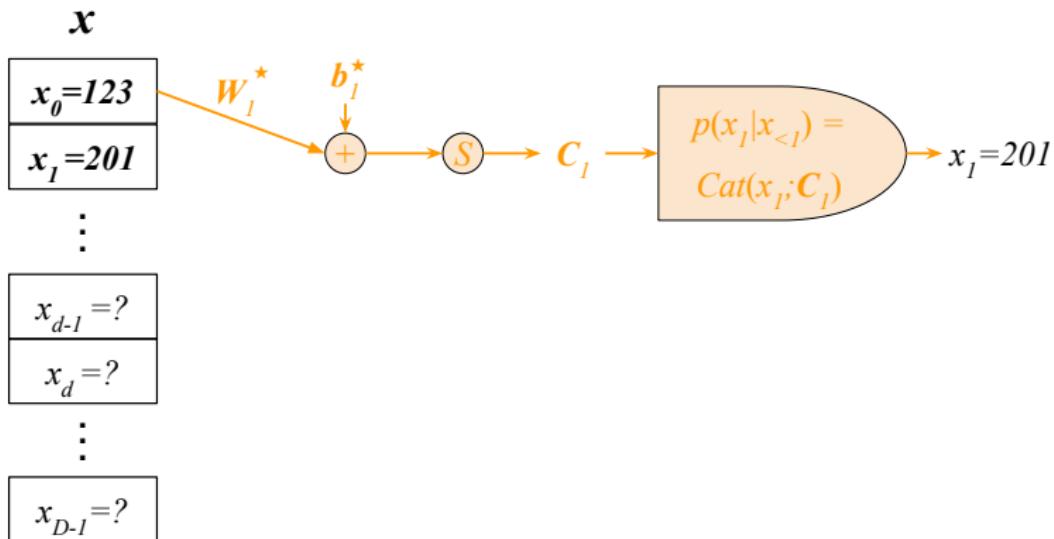


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-P}^\star, \mathbf{W}_{D-P}^\star \}$$

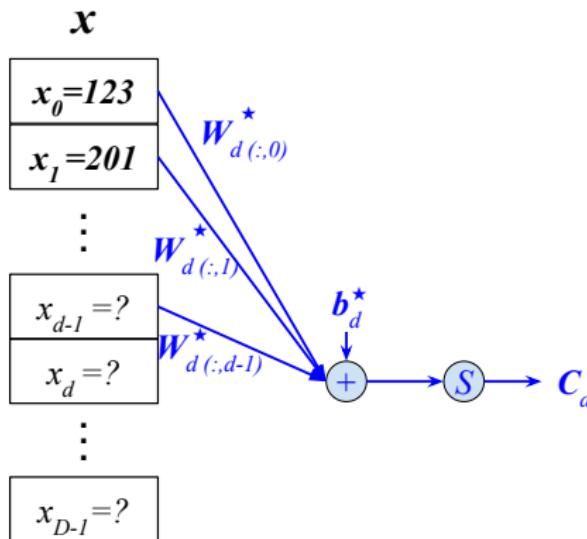


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-P}^\star, \mathbf{W}_{D-P}^\star \}$$

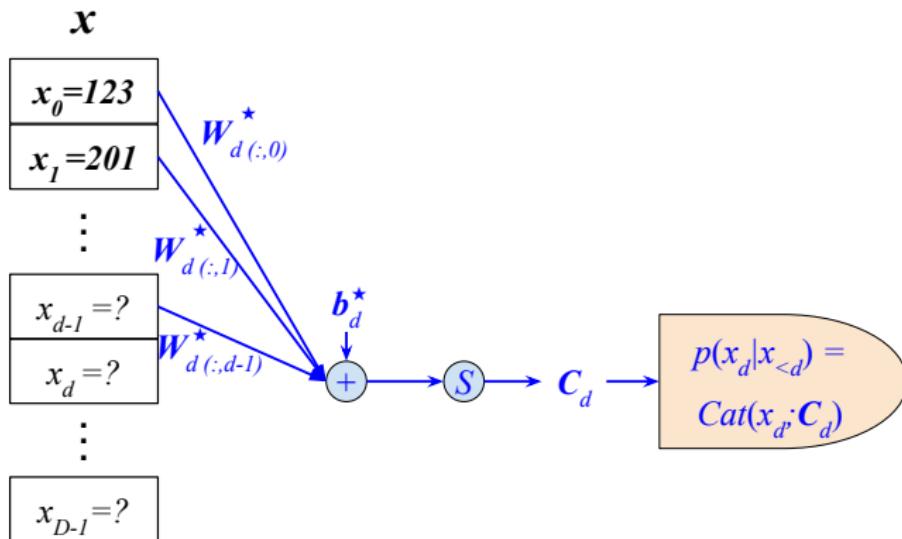


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-P}^\star, \mathbf{W}_{D-P}^\star \}$$

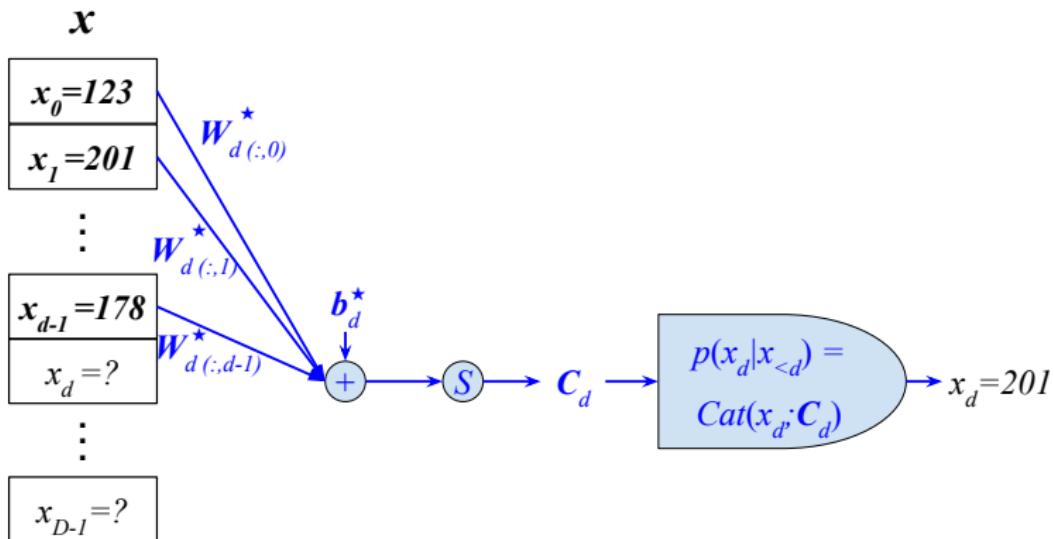


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^\star = \{ \mathbf{b}_0^\star, \mathbf{b}_1^\star, \mathbf{W}_1^\star, \dots, \mathbf{b}_d^\star, \mathbf{W}_d^\star, \dots, \mathbf{b}_{D-P}^\star, \mathbf{W}_{D-P}^\star \}$$

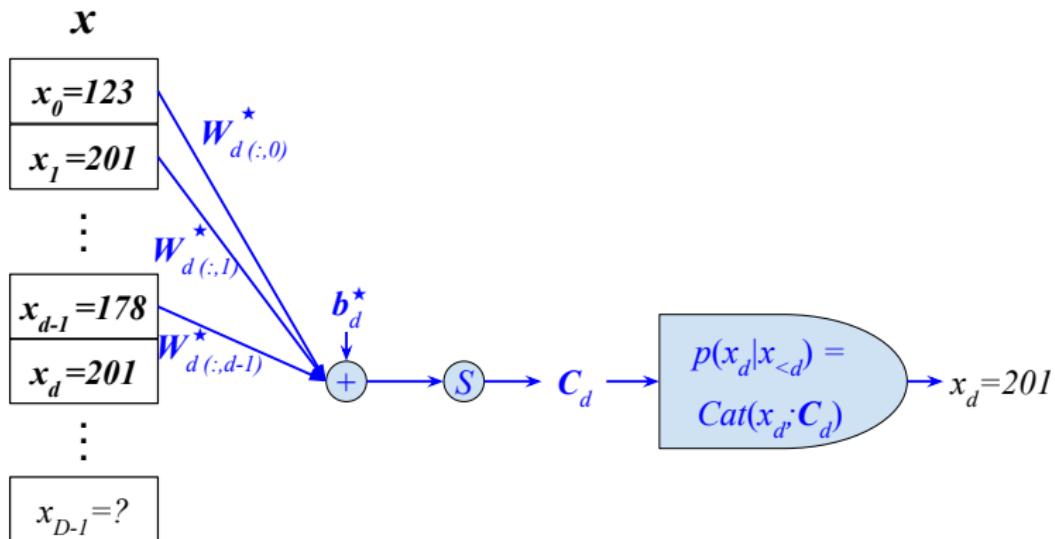


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-1}^*, \mathbf{W}_{D-1}^* \}$$

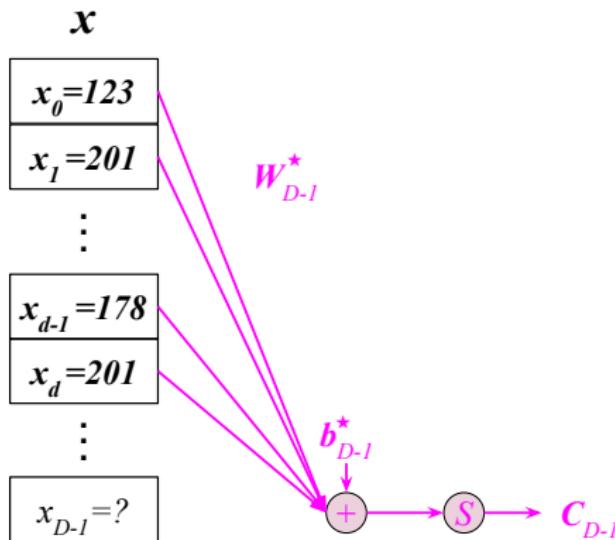


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-I}^*, \mathbf{W}_{D-I}^* \}$$

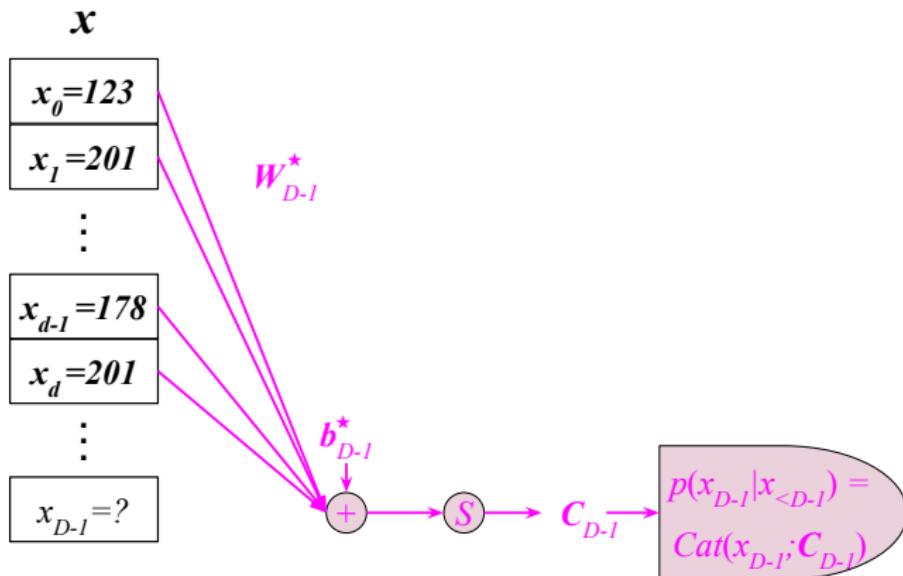


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-1}^*, \mathbf{W}_{D-1}^* \}$$

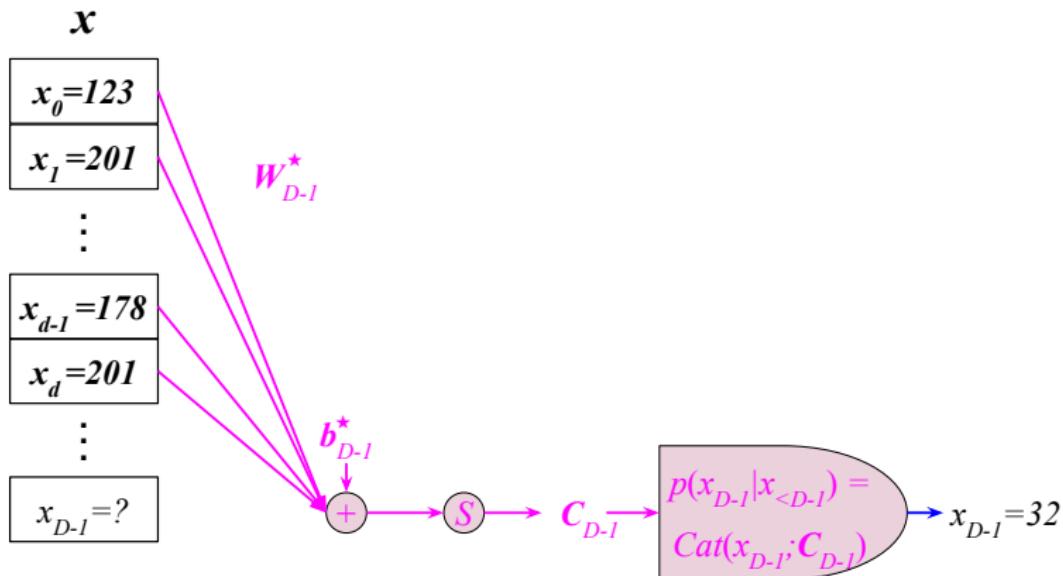


Figure: Sampling a trained Autoregressive Model

# Sampling from a Generative Model

$$\theta^* = \{ \mathbf{b}_0^*, \mathbf{b}_1^*, \mathbf{W}_1^*, \dots, \mathbf{b}_d^*, \mathbf{W}_d^*, \dots, \mathbf{b}_{D-1}^*, \mathbf{W}_{D-1}^* \}$$

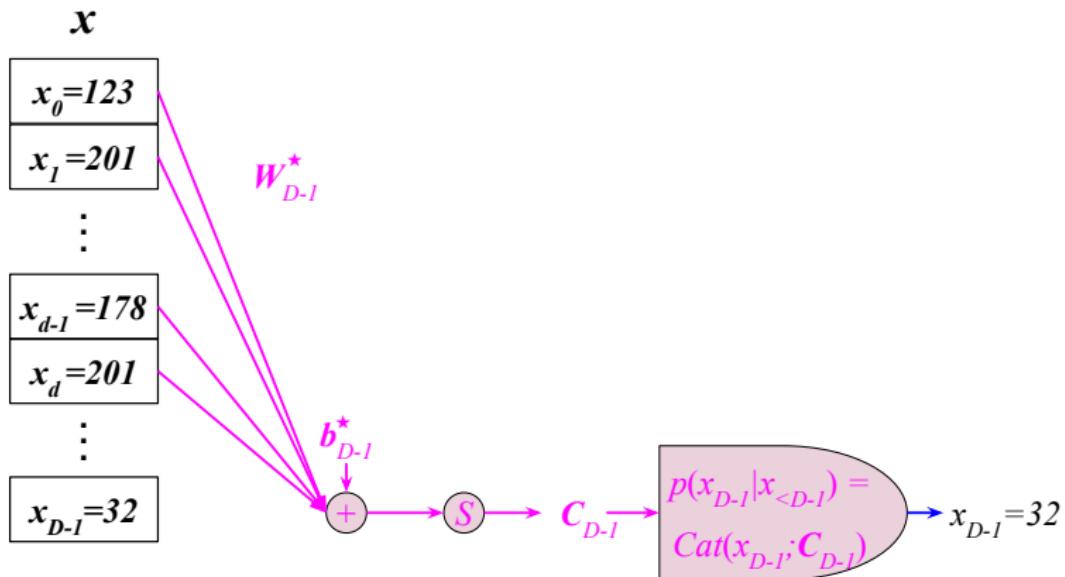


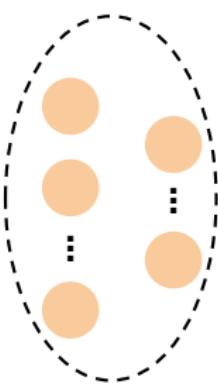
Figure: Sampling a trained Autoregressive Model

## Section 7

### Extensions

# Some of Autoregressive Modeling Extensions

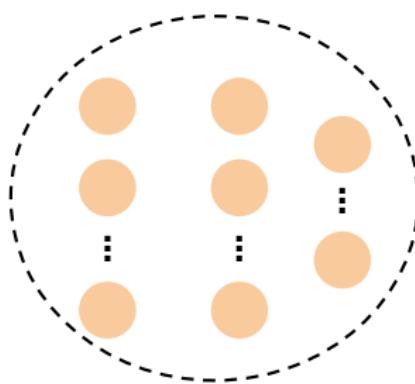
$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$



Fully Visible Sigmoid Belief Networks  
(FVSBN)

# Some of Autoregressive Modeling Extensions

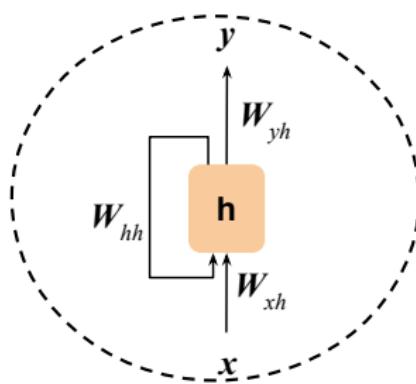
$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{$$



Neural Autoregressive Density Estimation  
(NADE)

# Some of Autoregressive Modeling Extensions

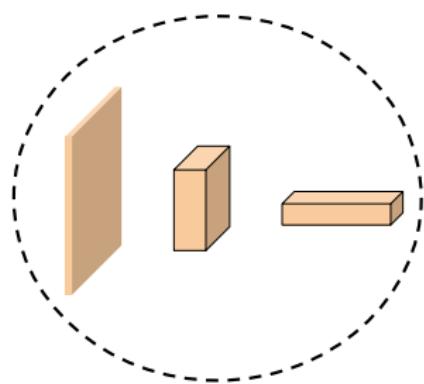
$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$



Pixel Recurrent Neural Networks  
(PixelRNN)

# Some of Autoregressive Modeling Extensions

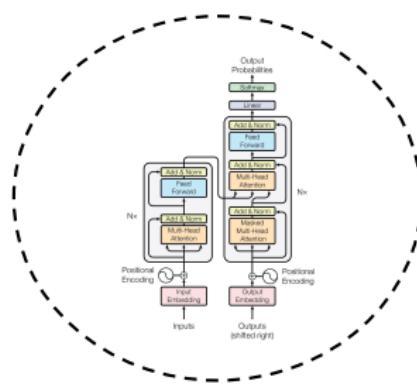
$$p(\mathbf{x}) = p(x_0) \times p(x_1 | \mathbf{x}_{<1}) \times \dots \times p(x_d | \mathbf{x}_{<d}) \times \dots \times p(x_{D-1} | \mathbf{x}_{<D-1})$$



Pixel Convolutional Neural Networks  
(PixelCNN)

# Some of Autoregressive Modeling Extensions

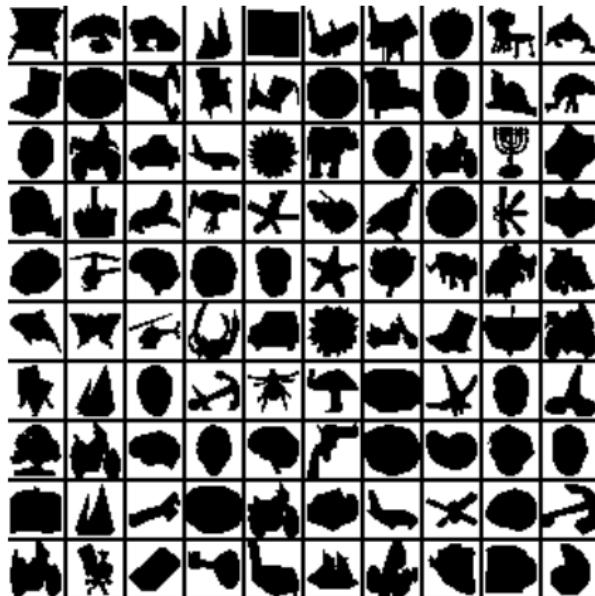
$$p(\mathbf{x}) = p(x_0) \times p(x_1 | x_{<1}) \times \dots \times p(x_d | x_{<d}) \times \dots \times p(x_{D-1} | x_{<D-1})$$



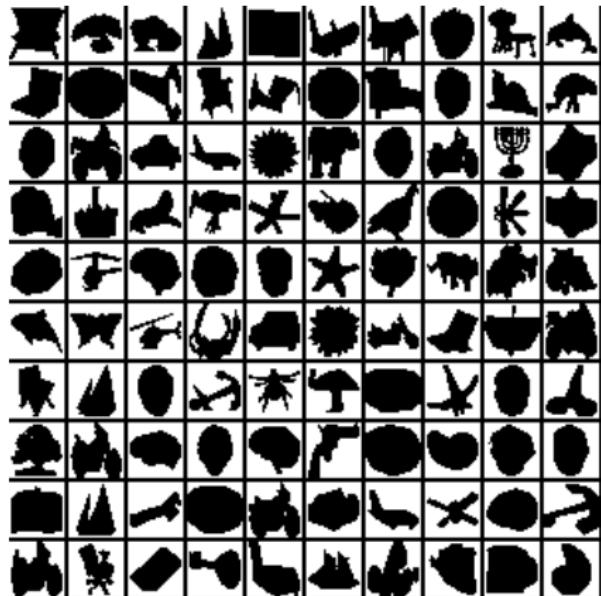
Transformer  
(ChatGPT)

## Section 8

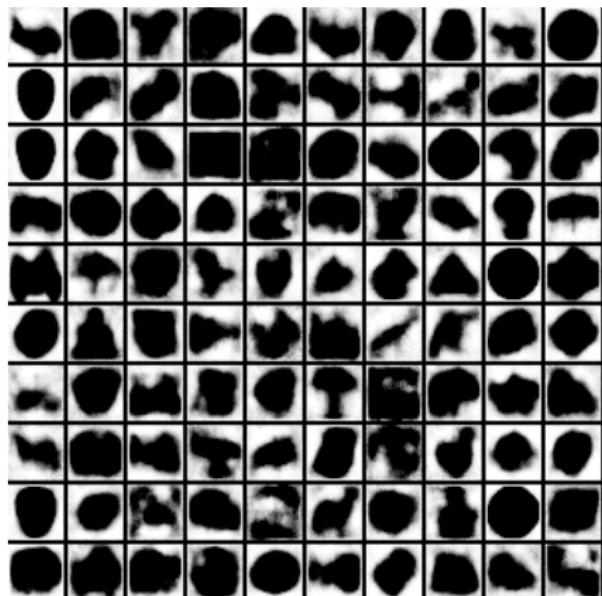
### Results



(a) Dataset samples



(a) Dataset samples



(b) Generated samples

Figure: FVSBN performance over Caltech 101 dataset (source: [5])

# NADE



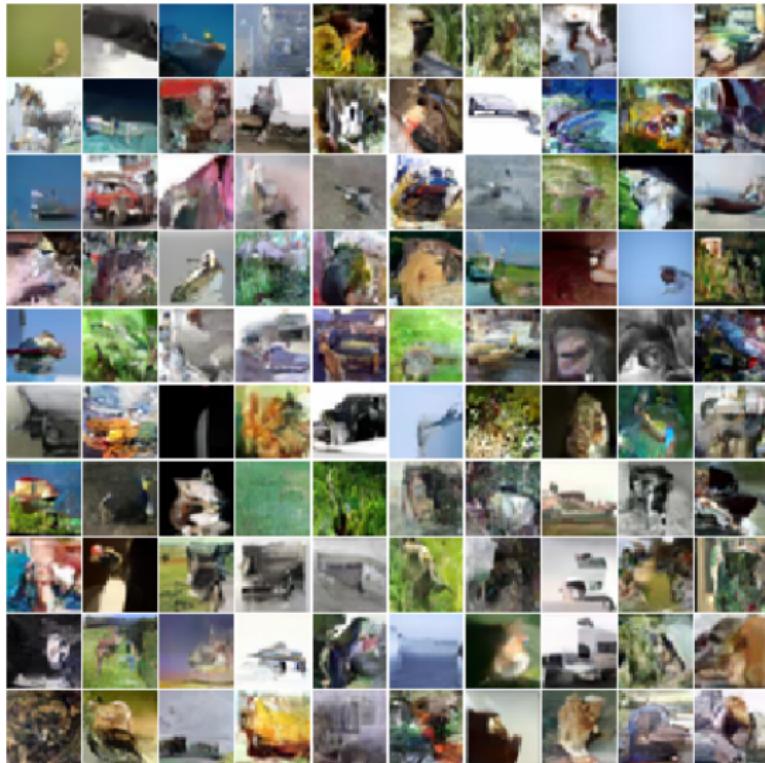
Figure: NADE performance over BMNIST dataset (source: [6])

# PixelRNN



Figure: Pixel RNN results in image completion (source: [7])

# PixelCNN++



**Figure:** Samples from our PixelCNN model trained on CIFAR-10 (source: [8])

## Section 9

### Applications

# Adversarial Robustness

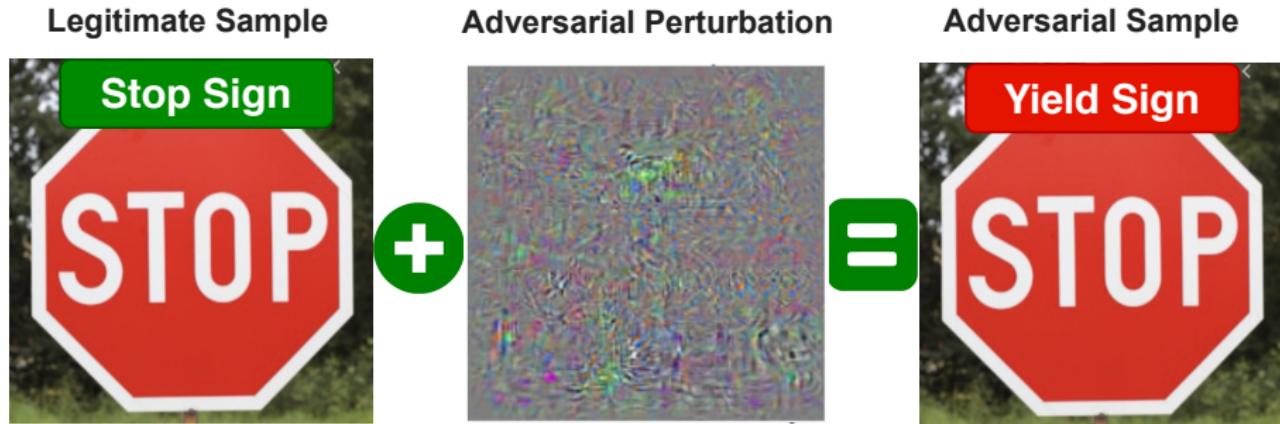


Figure: Different adversarial attacks to Frog image from Cifar10 dataset (source: [9])

# Adversarial Robustness



Figure: Sample adversarial attack to deep learning architectures (source: [9])

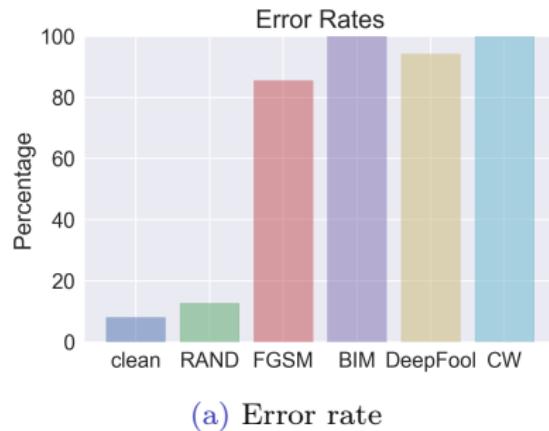
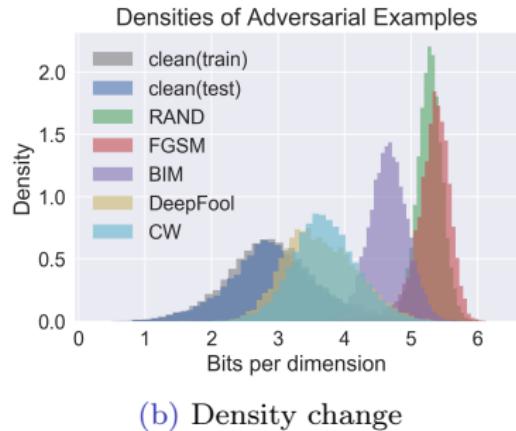


Figure: Using autoregressive models to detect adversarial samples (source: [9])

# Thank You!

Thank you for your attention!

*Do you have any questions or comments?*

## Contact Information

Sajjad Amini  
Email: [samini@umass.edu](mailto:samini@umass.edu)

# References I

-  Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole,  
“Score-based generative modeling through stochastic differential equations,”  
*arXiv preprint arXiv:2011.13456*, 2020.
-  Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu,  
“Wavenet: A generative model for raw audio,”  
*arXiv preprint arXiv:1609.03499*, 2016.
-  Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.,  
“Photorealistic text-to-image diffusion models with deep language understanding,”  
*Advances in Neural Information Processing Systems*, vol. 35, pp. 36479–36494, 2022.
-  Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi,  
“Palette: Image-to-image diffusion models,”  
in *ACM SIGGRAPH 2022 Conference Proceedings*, 2022, pp. 1–10.
-  Zhe Gan, Ricardo Henao, David Carlson, and Lawrence Carin,  
“Learning deep sigmoid belief networks with data augmentation,”  
in *Artificial Intelligence and Statistics*. PMLR, 2015, pp. 268–276.

# References II



Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle, “Neural autoregressive distribution estimation,” *The Journal of Machine Learning Research*, vol. 17, no. 1, pp. 7184–7220, 2016.



Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu, “Pixel recurrent neural networks,” in *International conference on machine learning*. PMLR, 2016, pp. 1747–1756.



Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P Kingma, “Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications,” *arXiv preprint arXiv:1701.05517*, 2017.



Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman, “Pixeldefend: Leveraging generative models to understand and defend against adversarial examples,” *arXiv preprint arXiv:1710.10766*, 2017.