Section 6

From Supervised Learning to Generative Modeling
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Subsection 1

Logistic Regression
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Logistic Regression Model
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Logistic Regression Model
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Logistic Regression Model
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Learning

One option for distance metric is:
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Learning

One option for distance metric is:

L(e) = ]Ew"’pdata(x)

KL (pdata(ylw) | po (ylw)ﬂ

Sajjad Amini COMPSC Summer 2024 Modeling



Learning

Distance Metric

One option for distance metric is:

L(0) = Ezrpaaa()

= Z pdata(m)

KL (pdata(ylw) | po (ylw)ﬂ

Zpdata(y|il:) log szta—(ykl?)]

» po(ylz)
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Learning

Distance Metric

One option for distance metric is:

KL (pdata(ylw) | po (ylw)ﬂ

L(e) = ]Ew"’pdata(x)
. pdata(y|$)

= Zpdata(m) Zpdata(y|a:) log TN
x Yy

= Z Zpdata(wv y) log pdata(y‘w)
y x

po(y|x)

E(2,y)~vpgaps (5. Y) 108 Pdata (y|2)]
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Learning

Distance Metric

One option for distance metric is:

KL (pdata(ylw) | po (ylw)ﬂ

L(e) = Ew"‘Pdaca(X)
= 2 raa(a) | 3 posalyle) Jog P (v[2)
y Do (y|$)

- Zzpdata logpdata y‘w Zzpdata T y 10gp9($|y)

E(2,y)~vpgaps (5. Y) 108 Pdata (y|2)] E(,y)~pgacs (5.Y) 108 Po (y|z)]
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Learning

Distance Metric

One option for distance metric is:

KL (pdata(ylw) | po (ylw)ﬂ

L(e) = EwNPdaca(X)
= 2 raa(a) | 3 posalyle) Jog P (v[2)
y Do (y|$)

- Z Zpdata log pda‘ca(y‘w - Z Zpdata(w7 y) log Do (w|y)

Yy x

E(2,y)~vpgaps (5. Y) 108 Pdata (y|2)] E(,y)~pgacs (5.Y) 108 Po (y|z)]

While the second term is a function of your model parameters, the first one is
independent of the selected Autoregressive model and thus can be omitted in
optimization.
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Training

Distance Metric

argmax L(6) = argmax —E(a y)~pouca (x.Y) [log po(y|z)]
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Training

Distance Metric

g L(6) = g —E (a1 ~panea (x,v) [10g Do (y])]

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(@)f (x)dz
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Training

Distance Metric

g L(6) = g —E (a1 ~panea (x,v) [10g Do (y])]

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(@)f (x)dz

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as 1,...,Ty.

Sajjad Amini COMPSC Summer 2024 Modeling



Training

Distance Metric

g L(6) = g —E (a1 ~panea (x,v) [10g Do (y])]

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(@)f (x)dz

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as @1, ..., xy.Then expectation can be approximated as:

Em~p(X) N Z f xn
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Training

Using Monte-Carlo estimation, we have the following optimization problem:

0" = argimax —E(,y)~paaea (X,Y) [108 Do (Y] )]
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Training

Using Monte-Carlo estimation, we have the following optimization problem:

0" = argimax —E(,y)~paaea (X,Y) [108 Do (Y] )]

N

1
~argmax —— » logpy(yi|x;
max = 3 og ol
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Sampling

Figure: Sampling a trained model
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Figure: Sampling a trained model
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Figure: Sampling a trained model
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Sampling a Categorical Dist
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Cat(y|C=|¢,=0.7])
c,=02

Figure: Sampling a categorical distribution using a Uniform sampler
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Sampling a Categorical Dist
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Figure: Sampling a categorical distribution using a Uniform sampler
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Sampling a Categorical Dist
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Sampling a C orical Dist
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Subsection 2

Deep Autoregressive Models
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Model Specification

Assume we just have MINST image {x;}Y ; without any label and we want to
estimate generating distribution p(x) where z € R7%4.
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Model Specification

Assume we just have MINST image {x;}Y ; without any label and we want to
estimate generating distribution p(x) where z € R7%4.

Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model pgata(y|z) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.
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Model Specification

Assume we just have MINST image {x;}Y ; without any label and we want to
estimate generating distribution p(x) where z € R7%4.

Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model pgata(y|z) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.

1= Jt seems that we can’t use logistic regression here.
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Model Specification

Assume we just have MINST image {x;}Y ; without any label and we want to
estimate generating distribution p(x) where z € R7%4.

Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model pgata(y|z) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.

1= Jt seems that we can’t use logistic regression here.

1= We can model each dimension separately because z; € {0,1,2,...,255}
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Model Specification

Assume we just have MINST image {x;}Y ; without any label and we want to
estimate generating distribution p(x) where z € R7%4.

Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model pgata(y|z) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.

1= Jt seems that we can’t use logistic regression here.

1= We can model each dimension separately because z; € {0,1,2,...,255}

V.

Based on the chain rule, we have:

p(x) = p(r1)p(w2|T<2) . .. p(Ta|T<ad) ... p(TD|T<D), Ty £ [x1,. .. ,fﬂd—ﬂT
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p(x) =p(x)) X plx, [x_) X ...... Xplx,[x_) X ...... Xpxp,1x_p )

Figure: Using logistic regression for generative modeling
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Modeling

p(x) =p(x)) X plx, [x_) X ...... Xip(xd| X)) X Xpxp,1x_p )

Figure: Using logistic regression for generative modeling
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Modeling

p(x) =p(x)) X plx,[x_) X ...... Xip(xd| X)) X Xpxp,1xp )

Figure: Using logistic regression for generative modeling
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Modeling

p(x) =p(x)) X plx, [x_) X ...... Xip(xd| X)) X Xpxp,1x_p )

W, b,

Figure: Using logistic regression for generative modeling
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Modeling

p(x)=px) Xpx, [x_) X ...... Xplx,|x_)X ... Xplxy, 1x, )

Figure: Using logistic regression for generative modeling
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Modeling

px) =p:)(x0) >;<p()c1 |x_ )X ...... Xplx,|x_)X ... Xplxy, 1x, )

Figure: Using logistic regression for generative modeling
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Modeling

px) =p:)(x0) >;<p()c1 |x_ )X ...... Xplx,|x_)X ... Xplxy, 1x, )

Figure: Using logistic regression for generative modeling
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Modeling

P() = plxg) X plx, | X)) X ... X fp(xd| XX X p(x,, %)
e T
b0
b, W,

Figure: Using logistic regression for generative modeling
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D-1’ 7 D-1

Figure: Using logistic regression for generative modeling
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Modeling
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Figure: Using logistic regression for generative modeling
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Figure: Using logistic regression for generative modeling
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Distance Metric

Distance Metric

We want to comapre two distribution pgata and pg, thus we can use KL diver-
gence as:

L(6) = KL(paatallpe) =
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Distance Metric

Distance Metric

We want to comapre two distribution pgata and pg, thus we can use KL diver-
gence as:

L(6) = KL(paatallPs) = Earpgaa(x) [log <%ﬂ
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Distance Metric

Distance Metric

We want to comapre two distribution pgata and pg, thus we can use KL diver-
gence as:

L(6) = KL(paatallPs) = Earpgaa(x) [log <%ﬂ

We can rewrite L(0) as:

L(6) = Eznpyara 108 Pdata(T)] — Eznpy,.. [l0gPo()]
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Distance Metric

Distance Metric

We want to comapre two distribution pgata and pg, thus we can use KL diver-
gence as:

L(6) = KL(paatallPs) = Earpgaa(x) [log <%ﬂ

We can rewrite L(0) as:

L(6) = Eznpyara 108 Pdata(T)] — Eznpy,.. [l0gPo()]

Because the first term on the right-hand side is independent of 8, we have:

0" = argminEyp,,,. [log <M>} = argmax Egp,... [logpg(x)]
0 po(x) 0
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From KL divergence to Model Likelihood

Model Likelihood

We see:
0" = argglaxEmwdata [log po ()]

Thus:
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From KL divergence to Model Likelihood

Model Likelihood

We see:
0" = argglaxEmwdata [log po ()]

Thus:

@ Desirable situation is when pg(X) assign high probability to probable
regions in pgata (X)
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From KL divergence to Model Likelihood

Model Likelihood

We see:
0" = argglaxEmwdata [log po ()]

Thus:

@ Desirable situation is when pg(X) assign high probability to probable
regions in pgata (X)

@ We have yet a problem: No access to pgata
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Training

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(e) f()de
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Training

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(e) f()de

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as x1,...,xnN.
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Training

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(e) f()de

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as @1, ..., xy.Then expectation can be approximated as:

]EwNp(X) N Z f mn

Sajjad Amini COMPSCI Summer 2024 Modeling



Model Likelihood Estimation

Model Likelihood Estimation

We are interested in solving the following problem:
0* = argglax E‘Bdiata(X) [logpe (m)]

but we don’t have access to pqata and instead, we have access to independent
samples from the distribution D = {a;} .
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] Likelihood Estimation

Model Likelihood

We are interested in solving the following problem:
0* = arglanax Em"’pdata(x) [logpe (m)]

but we don’t have access to pqata and instead, we have access to independent
samples from the distribution D = {a;} .

v

Solution via Monte Carlo Estimate
Using the Monte Carlo estimate we have:

B paua (%) l0g Po (@ Z log po (a0,
n 1

N
Thus: 0" = arggaa Z:: og po(xy,)
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Parametric Density Calculation

N peesb W by W

Figure: Calculating the likelihood as a function of model parameters

Sajjad Amini CO S immer 2024 Modeling



Parametric Density Calculation
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Figure: Calculating the likelihood as a function of model parameters
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Parametric Density Calculation
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Figure: Calculating the likelihood as a function of model parameters
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Figure: Calculating the likelihood as a function of model parameters
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation

Sajjad Amini
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Parametric Density Calculation
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Figure: Calculating the likelihood as a function of model parameters
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Parametric Density Calculation
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Sampling from a Generative Model

0= (b, B Wy B W

>Ud T & >UD-r L

Figure: Sampling a trained Autoregressive Model
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Figure: Sampling a trained Autoregressive Model
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Sampling from a Generative Model
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Figure: Sampling a trained Autoregressive Model
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Figure: Sampling a trained Autoregressive Model
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Figure: Sampling a trained Autoregressive Model
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Figure: Sampling a trained Autoregressive Model
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Figure: Sampling a trained Autoregressive Model
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Figure: Sampling a trained Autoregressive Model
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Sampling from a Generative Model

0= (b, B, W, .. B, W}

0° s Yo

>UD-r L

pxlx_) =
Cat(x,C)

Sajjad Amini COMPS J Modeling



Sampling from a Generative Model

0= (b, B Wy B W

0 2P W s Upp
X

x,=123

x,=201

x,, =178

X, =7 P = x,=201
; Cat(x,C)

xD>l=?

Sajjad Amini COMPS J Modeling



Sampling from a Generative Model

* * *
0= (], B W B W
X

x, =123
x,=201
x,, =178

4 B

x,=201 PL %, =201

Cat(x,C)

Xy ]=?

Modeling

Sajjad Amini



Sampling from a Generative Model

0= (b B, W, .. B, W}

0’ > Td T A >UD-r L

x,~123
x,=201

x,, =178

X, =201

Modeling

Sajjad Amini



Sampling from a Generative Model
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Fully Visible Sigmoid Belief Networks
(FVSBN)

Extensions
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Neural Autoregressive Density Estimation
(NADE)
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Pixel Recurrent Neural Networks
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Extensions
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Pixel Convolutional Neural Networks
(PixelCNN)
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Some of Autoregress odeling Extensions

X p(x

p(x) =p(x,) X plx,[x_) X Dl X

p.1)

Transformer
(ChatGPT)
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Figure: NADE performance over BMNIST dataset (source: [6])
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Figure: Samples from our PixelCNN model trained on CIFAR-10 (source: [8])
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Figure: Different adversarial attacks to Frog image from Cifar10 dataset (source: [9])
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Adversarial Robustne

clean RAND FGSM BIM DeepFool Ccw
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Figure: Sample adversarial attack to deep learning architectures (source: [9])
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Figure: Using autoregressive models to detect adversarial samples (source: [9])
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Thank You!

Thank you for your attention!

Do you have any questions or comments?

Contact Information

Sajjad Amini
Email: samini@Qumass.edu
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